Cargando…
An unexpected abundance of bidirectional promoters within Salmonella Typhimurium plasmids
Transcription of the DNA template, to generate an RNA message, is the first step in gene expression. The process initiates at DNA sequences called promoters. Conventionally, promoters have been considered to drive transcription in a specific direction. However, in recent work, we showed that many pr...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Microbiology Society
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10268837/ https://www.ncbi.nlm.nih.gov/pubmed/37204130 http://dx.doi.org/10.1099/mic.0.001339 |
Sumario: | Transcription of the DNA template, to generate an RNA message, is the first step in gene expression. The process initiates at DNA sequences called promoters. Conventionally, promoters have been considered to drive transcription in a specific direction. However, in recent work, we showed that many prokaryotic promoters can drive divergent transcription. This is a consequence of key DNA sequences for transcription initiation being inherently symmetrical. Here, we used global transcription start site mapping to determine the prevalence of such bidirectional promoters in Salmonella Typhimurium. Surprisingly, bidirectional promoters occur three times more frequently in plasmid components of the genome compared to chromosomal DNA. Implications for the evolution of promoter sequences are discussed. |
---|