Cargando…
Exploring the Advantages of Quantum Generative Adversarial Networks in Generative Chemistry
[Image: see text] De novo drug design with desired biological activities is crucial for developing novel therapeutics for patients. The drug development process is time- and resource-consuming, and it has a low probability of success. Recent advances in machine learning and deep learning technology...
Autores principales: | Kao, Po-Yu, Yang, Ya-Chu, Chiang, Wei-Yin, Hsiao, Jen-Yueh, Cao, Yudong, Aliper, Alex, Ren, Feng, Aspuru-Guzik, Alán, Zhavoronkov, Alex, Hsieh, Min-Hsiu, Lin, Yen-Chu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10268960/ https://www.ncbi.nlm.nih.gov/pubmed/37171372 http://dx.doi.org/10.1021/acs.jcim.3c00562 |
Ejemplares similares
-
Generative Adversarial Networks for Crystal Structure
Prediction
por: Kim, Sungwon, et al.
Publicado: (2020) -
The Hitchhiker’s Guide to Deep Learning Driven
Generative Chemistry
por: Ivanenkov, Yan, et al.
Publicado: (2023) -
Correction to “Generative Adversarial Networks
for Crystal Structure Prediction”
por: Kim, Sungwon, et al.
Publicado: (2022) -
Adiabatic Quantum Simulation of Quantum Chemistry
por: Babbush, Ryan, et al.
Publicado: (2014) -
The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology
por: Kadurin, Artur, et al.
Publicado: (2016)