Cargando…

Uptake and Transformation of Hexachlorocyclohexane Isomers (HCHs) in Tree Growth Rings at a Contaminated Field Site

[Image: see text] The potential transformation of hexachlorocyclohexane isomers (HCHs) within tree trunks could have a significant impact on the use of phytoscreening. However, the transformation mechanisms of HCH in trunks particularly in growth rings are not yet well understood. Therefore, a field...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Xiao, Kümmel, Steffen, Trapp, Stefan, Richnow, Hans Hermann
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10269325/
https://www.ncbi.nlm.nih.gov/pubmed/37267390
http://dx.doi.org/10.1021/acs.est.3c01929
Descripción
Sumario:[Image: see text] The potential transformation of hexachlorocyclohexane isomers (HCHs) within tree trunks could have a significant impact on the use of phytoscreening. However, the transformation mechanisms of HCH in trunks particularly in growth rings are not yet well understood. Therefore, a field study on an HCH-contaminated field site was conducted to investigate the fate of HCH, particularly α-HCH in tree trunks using multielement compound-specific isotope analysis (ME-CSIA) and enantiomer fractionation. The results indicate that α-HCH was transformed, as evidenced by higher δ(13)C and δ(37)Cl values detected across different growth ring sections and in the bark compared to those in muck and soil. Remarkably, in the middle growth ring section, δ(13)C values of HCH were only marginally higher or comparable to those in muck, whereas δ(37)Cl values were higher than those of the muck, indicating a different transformation mechanism. Moreover, the δ(37)Cl values of β-HCH also increased in the tree trunks compared to those in soil and muck, implying a transformation of β-HCH. Additionally, dual-element isotope analysis revealed that there are different transformation mechanisms between the middle growth rings and other sections. Our findings suggest that the transformation of HCHs in trunks could bias quantitative phytoscreening approaches; however, ME-CISA offers an option to estimate the degradation extent.