Cargando…

Computing the Many-Body Green’s Function with Adaptive Variational Quantum Dynamics

[Image: see text] We present a method to compute the many-body real-time Green’s function using an adaptive variational quantum dynamics simulation approach. The real-time Green’s function involves the time evolution of a quantum state with one additional electron with respect to the ground state wa...

Descripción completa

Detalles Bibliográficos
Autores principales: Gomes, Niladri, Williams-Young, David B., de Jong, Wibe A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10269342/
https://www.ncbi.nlm.nih.gov/pubmed/37227367
http://dx.doi.org/10.1021/acs.jctc.3c00150
Descripción
Sumario:[Image: see text] We present a method to compute the many-body real-time Green’s function using an adaptive variational quantum dynamics simulation approach. The real-time Green’s function involves the time evolution of a quantum state with one additional electron with respect to the ground state wave function that is first expressed as a linear–linear combination of state vectors. The real-time evolution and the Green’s function are obtained by combining the dynamics of the individual state vectors in a linear combination. The use of the adaptive protocol enables us to generate compact ansatzes on-the-fly while running the simulation. In order to improve the convergence of spectral features, Padé approximants are applied to obtain the Fourier transform of the Green’s function. We demonstrate the evaluation of the Green’s function on an IBM Q quantum computer. As a part of our error mitigation strategy, we develop a resolution-enhancing method that we successfully apply on the noisy data from the real-quantum hardware.