Cargando…

Analysis of the Plasmid-Based ts-Mutant ΔfabA/pTS-fabA Reveals Its Lethality under Aerobic Growth Conditions That Is Suppressed by Mild Overexpression of desA at a Restrictive Temperature in Pseudomonas aeruginosa

It is uncertain whether PA1610|fabA is essential or dispensable for growth on LB-agar plates under aerobic conditions in Pseudomonas aeruginosa PAO1. To examine its essentiality, we disrupted fabA in the presence of a native promoter-controlled complementary copy on ts-plasmid. In this analysis, we...

Descripción completa

Detalles Bibliográficos
Autores principales: Tian, Liyan, Yang, Zhili, Wang, Jianxin, Liu, Jianhua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10269440/
https://www.ncbi.nlm.nih.gov/pubmed/37191499
http://dx.doi.org/10.1128/spectrum.01338-23
_version_ 1785059169166950400
author Tian, Liyan
Yang, Zhili
Wang, Jianxin
Liu, Jianhua
author_facet Tian, Liyan
Yang, Zhili
Wang, Jianxin
Liu, Jianhua
author_sort Tian, Liyan
collection PubMed
description It is uncertain whether PA1610|fabA is essential or dispensable for growth on LB-agar plates under aerobic conditions in Pseudomonas aeruginosa PAO1. To examine its essentiality, we disrupted fabA in the presence of a native promoter-controlled complementary copy on ts-plasmid. In this analysis, we showed that the plasmid-based ts-mutant ΔfabA/pTS-fabA failed to grow at a restrictive temperature, consistent with the observation by Hoang and Schweizer (T. T. Hoang, H. P. Schweizer, J Bacteriol 179:5326–5332, 1997, https://doi.org/10.1128/jb.179.17.5326-5332.1997), and expanded on this by showing that ΔfabA exhibited curved cell morphology. On the other hand, strong induction of fabA-OE or PA3645|fabZ-OE impeded the growth of cells displaying oval morphology. Suppressor analysis revealed a mutant sup gene that suppressed a growth defect but not cell morphology of ΔfabA. Genome resequencing and transcriptomic profiling of sup identified PA0286|desA, whose promoter carried a single-nucleotide polymorphism (SNP), and transcription was significantly upregulated (level increase of >2-fold, P < 0.05). By integration of the SNP-bearing promoter-controlled desA gene into the chromosome of ΔfabA/pTS-fabA, we showed that the SNP is sufficient for ΔfabA to phenocopy the sup mutant. Furthermore, mild induction of the araC-P(BAD)-controlled desA gene but not desB rescued ΔfabA. These results validated that mild overexpression of desA fully suppressed the lethality but not the curved cell morphology of ΔfabA. Similarly, Zhu et al. (Zhu K, Choi K-H, Schweizer HP, Rock CO, Zhang Y-M, Mol Microbiol 60:260–273, 2006, https://doi.org/10.1111/j.1365-2958.2006.05088.x) showed that multicopy desA partially alleviated the slow growth phenotype of ΔfabA, the difference in which was that ΔfabA was viable. Taken together, our results demonstrate that fabA is essential for aerobic growth. We propose that the plasmid-based ts-allele is useful for exploring the genetic suppression interaction of essential genes of interest in P. aeruginosa. IMPORTANCE Pseudomonas aeruginosa is an opportunistic pathogen whose multidrug resistance demands new drug development. Fatty acids are essential for viability, and essential genes are ideal drug targets. However, the growth defect of essential gene mutants can be suppressed. Suppressors tend to be accumulated during the construction of essential gene deletion mutants, hampering the genetic analysis. To circumvent this issue, we constructed a deletion allele of fabA in the presence of a native promoter-controlled complementary copy in the ts-plasmid. In this analysis, we showed that ΔfabA/pTS-fabA failed to grow at a restrictive temperature, supporting its essentiality. Suppressor analysis revealed desA, whose promoter carried a SNP and whose transcription was upregulated. We validated that both the SNP-bearing promoter-controlled and regulable P(BAD) promoter-controlled desA suppressed the lethality of ΔfabA. Together, our results demonstrate that fabA is essential for aerobic growth. We propose that plasmid-based ts-alleles are suitable for genetic analysis of essential genes of interest.
format Online
Article
Text
id pubmed-10269440
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-102694402023-06-16 Analysis of the Plasmid-Based ts-Mutant ΔfabA/pTS-fabA Reveals Its Lethality under Aerobic Growth Conditions That Is Suppressed by Mild Overexpression of desA at a Restrictive Temperature in Pseudomonas aeruginosa Tian, Liyan Yang, Zhili Wang, Jianxin Liu, Jianhua Microbiol Spectr Research Article It is uncertain whether PA1610|fabA is essential or dispensable for growth on LB-agar plates under aerobic conditions in Pseudomonas aeruginosa PAO1. To examine its essentiality, we disrupted fabA in the presence of a native promoter-controlled complementary copy on ts-plasmid. In this analysis, we showed that the plasmid-based ts-mutant ΔfabA/pTS-fabA failed to grow at a restrictive temperature, consistent with the observation by Hoang and Schweizer (T. T. Hoang, H. P. Schweizer, J Bacteriol 179:5326–5332, 1997, https://doi.org/10.1128/jb.179.17.5326-5332.1997), and expanded on this by showing that ΔfabA exhibited curved cell morphology. On the other hand, strong induction of fabA-OE or PA3645|fabZ-OE impeded the growth of cells displaying oval morphology. Suppressor analysis revealed a mutant sup gene that suppressed a growth defect but not cell morphology of ΔfabA. Genome resequencing and transcriptomic profiling of sup identified PA0286|desA, whose promoter carried a single-nucleotide polymorphism (SNP), and transcription was significantly upregulated (level increase of >2-fold, P < 0.05). By integration of the SNP-bearing promoter-controlled desA gene into the chromosome of ΔfabA/pTS-fabA, we showed that the SNP is sufficient for ΔfabA to phenocopy the sup mutant. Furthermore, mild induction of the araC-P(BAD)-controlled desA gene but not desB rescued ΔfabA. These results validated that mild overexpression of desA fully suppressed the lethality but not the curved cell morphology of ΔfabA. Similarly, Zhu et al. (Zhu K, Choi K-H, Schweizer HP, Rock CO, Zhang Y-M, Mol Microbiol 60:260–273, 2006, https://doi.org/10.1111/j.1365-2958.2006.05088.x) showed that multicopy desA partially alleviated the slow growth phenotype of ΔfabA, the difference in which was that ΔfabA was viable. Taken together, our results demonstrate that fabA is essential for aerobic growth. We propose that the plasmid-based ts-allele is useful for exploring the genetic suppression interaction of essential genes of interest in P. aeruginosa. IMPORTANCE Pseudomonas aeruginosa is an opportunistic pathogen whose multidrug resistance demands new drug development. Fatty acids are essential for viability, and essential genes are ideal drug targets. However, the growth defect of essential gene mutants can be suppressed. Suppressors tend to be accumulated during the construction of essential gene deletion mutants, hampering the genetic analysis. To circumvent this issue, we constructed a deletion allele of fabA in the presence of a native promoter-controlled complementary copy in the ts-plasmid. In this analysis, we showed that ΔfabA/pTS-fabA failed to grow at a restrictive temperature, supporting its essentiality. Suppressor analysis revealed desA, whose promoter carried a SNP and whose transcription was upregulated. We validated that both the SNP-bearing promoter-controlled and regulable P(BAD) promoter-controlled desA suppressed the lethality of ΔfabA. Together, our results demonstrate that fabA is essential for aerobic growth. We propose that plasmid-based ts-alleles are suitable for genetic analysis of essential genes of interest. American Society for Microbiology 2023-05-16 /pmc/articles/PMC10269440/ /pubmed/37191499 http://dx.doi.org/10.1128/spectrum.01338-23 Text en Copyright © 2023 Tian et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Tian, Liyan
Yang, Zhili
Wang, Jianxin
Liu, Jianhua
Analysis of the Plasmid-Based ts-Mutant ΔfabA/pTS-fabA Reveals Its Lethality under Aerobic Growth Conditions That Is Suppressed by Mild Overexpression of desA at a Restrictive Temperature in Pseudomonas aeruginosa
title Analysis of the Plasmid-Based ts-Mutant ΔfabA/pTS-fabA Reveals Its Lethality under Aerobic Growth Conditions That Is Suppressed by Mild Overexpression of desA at a Restrictive Temperature in Pseudomonas aeruginosa
title_full Analysis of the Plasmid-Based ts-Mutant ΔfabA/pTS-fabA Reveals Its Lethality under Aerobic Growth Conditions That Is Suppressed by Mild Overexpression of desA at a Restrictive Temperature in Pseudomonas aeruginosa
title_fullStr Analysis of the Plasmid-Based ts-Mutant ΔfabA/pTS-fabA Reveals Its Lethality under Aerobic Growth Conditions That Is Suppressed by Mild Overexpression of desA at a Restrictive Temperature in Pseudomonas aeruginosa
title_full_unstemmed Analysis of the Plasmid-Based ts-Mutant ΔfabA/pTS-fabA Reveals Its Lethality under Aerobic Growth Conditions That Is Suppressed by Mild Overexpression of desA at a Restrictive Temperature in Pseudomonas aeruginosa
title_short Analysis of the Plasmid-Based ts-Mutant ΔfabA/pTS-fabA Reveals Its Lethality under Aerobic Growth Conditions That Is Suppressed by Mild Overexpression of desA at a Restrictive Temperature in Pseudomonas aeruginosa
title_sort analysis of the plasmid-based ts-mutant δfaba/pts-faba reveals its lethality under aerobic growth conditions that is suppressed by mild overexpression of desa at a restrictive temperature in pseudomonas aeruginosa
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10269440/
https://www.ncbi.nlm.nih.gov/pubmed/37191499
http://dx.doi.org/10.1128/spectrum.01338-23
work_keys_str_mv AT tianliyan analysisoftheplasmidbasedtsmutantdfabaptsfabarevealsitslethalityunderaerobicgrowthconditionsthatissuppressedbymildoverexpressionofdesaatarestrictivetemperatureinpseudomonasaeruginosa
AT yangzhili analysisoftheplasmidbasedtsmutantdfabaptsfabarevealsitslethalityunderaerobicgrowthconditionsthatissuppressedbymildoverexpressionofdesaatarestrictivetemperatureinpseudomonasaeruginosa
AT wangjianxin analysisoftheplasmidbasedtsmutantdfabaptsfabarevealsitslethalityunderaerobicgrowthconditionsthatissuppressedbymildoverexpressionofdesaatarestrictivetemperatureinpseudomonasaeruginosa
AT liujianhua analysisoftheplasmidbasedtsmutantdfabaptsfabarevealsitslethalityunderaerobicgrowthconditionsthatissuppressedbymildoverexpressionofdesaatarestrictivetemperatureinpseudomonasaeruginosa