Cargando…

The Inactivated ISKNV-I Vaccine Confers Highly Effective Cross-Protection against Epidemic RSIV-I and RSIV-II from Cultured Spotted Sea Bass Lateolabrax maculatus

The genus Megalocytivirus of the family Iridoviridae is composed of two distinct species, namely, infectious spleen and kidney necrosis virus (ISKNV) and scale drop disease virus (SDDV), and both are important causative agents in a variety of bony fish worldwide. Of them, the ISKNV species is subdiv...

Descripción completa

Detalles Bibliográficos
Autores principales: Fu, Weixuan, Li, Yong, Fu, Yuting, Zhang, Wenfeng, Luo, Panpan, Sun, Qianqian, Yu, Fangzhao, Weng, Shaoping, Li, Wangdong, He, Jianguo, Dong, Chuanfu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10269448/
https://www.ncbi.nlm.nih.gov/pubmed/37222626
http://dx.doi.org/10.1128/spectrum.04495-22
Descripción
Sumario:The genus Megalocytivirus of the family Iridoviridae is composed of two distinct species, namely, infectious spleen and kidney necrosis virus (ISKNV) and scale drop disease virus (SDDV), and both are important causative agents in a variety of bony fish worldwide. Of them, the ISKNV species is subdivided into three genotypes, namely, red seabream iridovirus (RSIV), ISKNV, and turbot reddish body iridovirus (TRBIV), and a further six subgenotypes, RSIV-I, RSIV-II, ISKNV-I, ISKNV-II, TRBIV-I, and TRBIV-II. Commercial vaccines derived from RSIV-I , RSIV-II and ISKNV-I have been available to several fish species. However, studies regarding the cross-protection effect among different genotype or subgenotype isolates have not been fully elucidated. In this study, RSIV-I and RSIV-II were demonstrated as the causative agents in cultured spotted seabass, Lateolabrax maculatus, through serial robust evidence, including cell culture-based viral isolation, whole-genome determination and phylogeny analysis, artificial challenge, histopathology, immunohistochemistry, and immunofluorescence as well as transmission electron microscope observation. Thereafter, a formalin-killed cell (FKC) vaccine generated from an ISKNV-I isolate was prepared to evaluate the protective effects against two spotted seabass original RSIV-I and RSIV-II. The result showed that the ISKNV-I-based FKC vaccine conferred almost complete cross-protection against RSIV-I and RSIV-II as well as ISKNV-I itself. No serotype difference was observed among RSIV-I, RSIV-II, and ISKNV-I. Additionally, the mandarin fish Siniperca chuatsi is proposed as an ideal infection and vaccination fish species for the study of various megalocytiviral isolates. IMPORTANCE Red seabream iridovirus (RSIV) infects a wide mariculture bony fish and has resulted in significant annual economic loss worldwide. Previous studies showed that the phenotypic diversity of infectious RSIV isolates would lead to different virulence characteristics, viral antigenicity, and vaccine efficacy as well as host range. Importantly, it is still doubted whether a universal vaccine could confer the same highly protective effect against various genotypic isolates. Our study here presented enough experimental evidence that a water in oil (w/o) formation of inactivated ISKNV-I vaccine could confer almost complete protection against RSIV-I and RSIV-II as well as ISKNV-I itself. Our study provides valuable data for better understanding the differential infection and immunity among different genotypes of ISKNV and RSIV isolates in the genus Megalocytivirus.