Cargando…

Learning from Seed Microbes: Trichoderma Coating Intervenes in Rhizosphere Microbiome Assembly

Seed-associated microbiomes can impact the later colonization of a plant rhizosphere microbiome. However, there remains little insight into the underlying mechanisms concerning how alterations in the composition of the seed microbiome may intervene in the assembly of a rhizosphere microbiome. In thi...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Penghao, Yang, Shengdie, Liu, Xiaoyu, Zhang, Tianyi, Zhao, Xinyuan, Wen, Tao, Zhang, Jian, Xue, Chao, Shen, Qirong, Yuan, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10269462/
https://www.ncbi.nlm.nih.gov/pubmed/37195176
http://dx.doi.org/10.1128/spectrum.03097-22
Descripción
Sumario:Seed-associated microbiomes can impact the later colonization of a plant rhizosphere microbiome. However, there remains little insight into the underlying mechanisms concerning how alterations in the composition of the seed microbiome may intervene in the assembly of a rhizosphere microbiome. In this study, the fungus Trichoderma guizhouense NJAU4742 was introduced to both maize and watermelon seed microbiomes by seed coating. Application was found to significantly promote seed germination and improve plant growth and rhizosphere soil quality. The activities of acid phosphatase, cellulase, peroxidase, sucrase, and α-glucosidase increased significantly in two crops. The introduction of Trichoderma guizhouense NJAU4742 also led to a decrease in the occurrence of disease. Coating with T. guizhouense NJAU4742 did not alter the alpha diversities of the bacterial and fungal communities but formed a key network module that contained both Trichoderma and Mortierella. This key network module comprised of these potentially beneficial microorganisms was positively linked with the belowground biomass and activities of rhizosphere soil enzymes but negatively correlated with disease incidence. Overall, this study provides insights into plant growth promotion and plant health maintenance via seed coating in order to influence the rhizosphere microbiome. IMPORTANCE Seed-associated microbiomes can impact the rhizosphere microbiome assembly and function display. However, there remains little insight into the underlying mechanisms concerning how alterations in the composition of the seed microbiome with the beneficial microbes may intervene in the assembly of a rhizosphere microbiome. Here, we introduced T. guizhouense NJAU4742 to the seed microbiome by seed coating. This introduction led to a decrease in the occurrence of disease and an increase in plant growth; furthermore, it formed a key network module that contained both Trichoderma and Mortierella. Our study provides insights into plant growth promotion and plant health maintenance via seed coating in order to influence the rhizosphere microbiome.