Cargando…

Amuvatinib Blocks SARS-CoV-2 Infection at the Entry Step of the Viral Life Cycle

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). SARS-CoV-2 propagation is mediated by the protein interaction between viral proteins and host cells. Tyrosine kinase has been implicated in viral replication, and hence, it has...

Descripción completa

Detalles Bibliográficos
Autores principales: Huynh, Trang T. X., Pham, Thuy X., Lee, Gun-Hee, Lee, Jae-Bong, Lee, Sung-Geun, Tark, Dongseob, Lim, Yun-Sook, Hwang, Soon B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10269473/
https://www.ncbi.nlm.nih.gov/pubmed/36995225
http://dx.doi.org/10.1128/spectrum.05105-22
Descripción
Sumario:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). SARS-CoV-2 propagation is mediated by the protein interaction between viral proteins and host cells. Tyrosine kinase has been implicated in viral replication, and hence, it has become a target for developing antiviral drugs. We have previously reported that receptor tyrosine kinase inhibitor blocks the replication of hepatitis C virus (HCV). In the present study, we investigated two receptor tyrosine kinase-specific inhibitors, amuvatinib and imatinib, for their potential antiviral efficacies against SARS-CoV-2. Treatment with either amuvatinib or imatinib displays an effective inhibitory activity against SARS-CoV-2 propagation without an obvious cytopathic effect in Vero E6 cells. Notably, amuvatinib exerts a stronger antiviral activity than imatinib against SARS-CoV-2 infection. Amuvatinib blocks SARS-CoV-2 infection with a 50% effective concentration (EC(50)) value ranging from ~0.36 to 0.45 μM in Vero E6 cells. We further demonstrate that amuvatinib inhibits SARS-CoV-2 propagation in human lung Calu-3 cells. Using pseudoparticle infection assay, we verify that amuvatinib blocks SARS-CoV-2 at the entry step of the viral life cycle. More specifically, amuvatinib inhibits SARS-CoV-2 infection at the binding-attachment step. Moreover, amuvatinib exhibits highly efficient antiviral activity against emerging SARS-CoV-2 variants. Importantly, we demonstrate that amuvatinib inhibits SARS-CoV-2 infection by blocking ACE2 cleavage. Taken together, our data suggest that amuvatinib may provide a potential therapeutic agent for the treatment of COVID-19. IMPORTANCE Tyrosine kinase has been implicated in viral replication and has become an antiviral drug target. Here, we chose two well-known receptor tyrosine kinase inhibitors, amuvatinib and imatinib, and evaluated their drug potencies against SARS-CoV-2. Surprisingly, amuvatinib displays a stronger antiviral activity than imatinib against SARS-CoV-2. Amuvatinib blocks SARS-CoV-2 infection by inhibiting ACE2 cleavage and the subsequent soluble ACE2 receptor. All these data suggest that amuvatinib may be a potential therapeutic agent in SARS-CoV-2 prevention for those experiencing vaccine breakthroughs.