Cargando…

Antibiotic-Resistant Vibrio cholerae O1 and Its SXT Elements Associated with Two Cholera Epidemics in Kenya in 2007 to 2010 and 2015 to 2016

Multidrug-resistant Vibrio cholerae O1 strains have long been observed in Africa, and strains exhibiting new resistance phenotypes have emerged during recent epidemics in Kenya. This study aimed to determine the epidemiological aspects, drug resistance patterns, and genetic elements of V. cholerae O...

Descripción completa

Detalles Bibliográficos
Autores principales: Shah, Mohammad Monir, Bundi, Martin, Kathiiko, Cyrus, Guyo, Sora, Galata, Amina, Miringu, Gabriel, Ichinose, Yoshio, Yoshida, Lay-Myint
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10269778/
https://www.ncbi.nlm.nih.gov/pubmed/37125926
http://dx.doi.org/10.1128/spectrum.04140-22
_version_ 1785059247410642944
author Shah, Mohammad Monir
Bundi, Martin
Kathiiko, Cyrus
Guyo, Sora
Galata, Amina
Miringu, Gabriel
Ichinose, Yoshio
Yoshida, Lay-Myint
author_facet Shah, Mohammad Monir
Bundi, Martin
Kathiiko, Cyrus
Guyo, Sora
Galata, Amina
Miringu, Gabriel
Ichinose, Yoshio
Yoshida, Lay-Myint
author_sort Shah, Mohammad Monir
collection PubMed
description Multidrug-resistant Vibrio cholerae O1 strains have long been observed in Africa, and strains exhibiting new resistance phenotypes have emerged during recent epidemics in Kenya. This study aimed to determine the epidemiological aspects, drug resistance patterns, and genetic elements of V. cholerae O1 strains isolated from two cholera epidemics in Kenya between 2007 and 2010 and between 2015 and 2016. A total of 228 V. cholerae O1 strains, including 226 clinical strains isolated from 13 counties in Kenya during the 2007–2010 and 2015–2016 cholera epidemics and two environmental isolates (from shallow well water and spring water isolates) isolated from Pokot and Kwale Counties, respectively, in 2010 were subjected to biotyping, serotyping, and antimicrobial susceptibility testing, including the detection of antibiotic resistance genes and mobile genetic elements. All V. cholerae isolates were identified as El Tor biotypes and susceptible to ceftriaxone, gentamicin, and ciprofloxacin. The majority of isolates were resistant to trimethoprim-sulfamethoxazole (94.6%), streptomycin (92.8%), and nalidixic acid (64.5%), while lower resistance was observed against ampicillin (3.6%), amoxicillin (4.2%), chloramphenicol (3.0%), and doxycycline (1.8%). Concurrently, the integrating conjugative (SXT) element was found in 95.5% of the V. cholerae isolates; conversely, class 1, 2, and 3 integrons were absent. Additionally, 64.5% of the isolates exhibited multidrug resistance patterns. Antibiotic-resistant gene clusters suggest that environmental bacteria may act as cassette reservoirs that favor resistant pathogens. On the other hand, the 2015–2016 epidemic strains were found susceptible to most antibiotics except nalidixic acid. This revealed the replacement of multidrug-resistant strains exhibiting new resistance phenotypes that emerged after Kenya's 2007–2010 epidemic. IMPORTANCE Kenya is a country where cholera is endemic; it has experienced three substantial epidemics over the past few decades, but there are limited data on the drug resistance patterns of V. cholerae at the national level. To the best of our knowledge, this is the first study to investigate the antimicrobial susceptibility profiles of V. cholerae O1 strains isolated from two consecutive epidemics and to examine their associated antimicrobial genetic determinants. Our study results revealed two distinct antibiotic resistance trends in two separate epidemics, particularly trends for multidrug-associated mobile genetic elements and chromosomal mutation-oriented resistant strains from the 2007–2010 epidemic. In contrast, only nalidixic acid-associated chromosomal mutated strains were isolated from the 2015–2016 epidemic. This study also found similar patterns of antibiotic resistance in environmental and clinical strains. Continuous monitoring is needed to control emerging multidrug-resistant isolates in the future.
format Online
Article
Text
id pubmed-10269778
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-102697782023-06-16 Antibiotic-Resistant Vibrio cholerae O1 and Its SXT Elements Associated with Two Cholera Epidemics in Kenya in 2007 to 2010 and 2015 to 2016 Shah, Mohammad Monir Bundi, Martin Kathiiko, Cyrus Guyo, Sora Galata, Amina Miringu, Gabriel Ichinose, Yoshio Yoshida, Lay-Myint Microbiol Spectr Research Article Multidrug-resistant Vibrio cholerae O1 strains have long been observed in Africa, and strains exhibiting new resistance phenotypes have emerged during recent epidemics in Kenya. This study aimed to determine the epidemiological aspects, drug resistance patterns, and genetic elements of V. cholerae O1 strains isolated from two cholera epidemics in Kenya between 2007 and 2010 and between 2015 and 2016. A total of 228 V. cholerae O1 strains, including 226 clinical strains isolated from 13 counties in Kenya during the 2007–2010 and 2015–2016 cholera epidemics and two environmental isolates (from shallow well water and spring water isolates) isolated from Pokot and Kwale Counties, respectively, in 2010 were subjected to biotyping, serotyping, and antimicrobial susceptibility testing, including the detection of antibiotic resistance genes and mobile genetic elements. All V. cholerae isolates were identified as El Tor biotypes and susceptible to ceftriaxone, gentamicin, and ciprofloxacin. The majority of isolates were resistant to trimethoprim-sulfamethoxazole (94.6%), streptomycin (92.8%), and nalidixic acid (64.5%), while lower resistance was observed against ampicillin (3.6%), amoxicillin (4.2%), chloramphenicol (3.0%), and doxycycline (1.8%). Concurrently, the integrating conjugative (SXT) element was found in 95.5% of the V. cholerae isolates; conversely, class 1, 2, and 3 integrons were absent. Additionally, 64.5% of the isolates exhibited multidrug resistance patterns. Antibiotic-resistant gene clusters suggest that environmental bacteria may act as cassette reservoirs that favor resistant pathogens. On the other hand, the 2015–2016 epidemic strains were found susceptible to most antibiotics except nalidixic acid. This revealed the replacement of multidrug-resistant strains exhibiting new resistance phenotypes that emerged after Kenya's 2007–2010 epidemic. IMPORTANCE Kenya is a country where cholera is endemic; it has experienced three substantial epidemics over the past few decades, but there are limited data on the drug resistance patterns of V. cholerae at the national level. To the best of our knowledge, this is the first study to investigate the antimicrobial susceptibility profiles of V. cholerae O1 strains isolated from two consecutive epidemics and to examine their associated antimicrobial genetic determinants. Our study results revealed two distinct antibiotic resistance trends in two separate epidemics, particularly trends for multidrug-associated mobile genetic elements and chromosomal mutation-oriented resistant strains from the 2007–2010 epidemic. In contrast, only nalidixic acid-associated chromosomal mutated strains were isolated from the 2015–2016 epidemic. This study also found similar patterns of antibiotic resistance in environmental and clinical strains. Continuous monitoring is needed to control emerging multidrug-resistant isolates in the future. American Society for Microbiology 2023-05-01 /pmc/articles/PMC10269778/ /pubmed/37125926 http://dx.doi.org/10.1128/spectrum.04140-22 Text en Copyright © 2023 Shah et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Shah, Mohammad Monir
Bundi, Martin
Kathiiko, Cyrus
Guyo, Sora
Galata, Amina
Miringu, Gabriel
Ichinose, Yoshio
Yoshida, Lay-Myint
Antibiotic-Resistant Vibrio cholerae O1 and Its SXT Elements Associated with Two Cholera Epidemics in Kenya in 2007 to 2010 and 2015 to 2016
title Antibiotic-Resistant Vibrio cholerae O1 and Its SXT Elements Associated with Two Cholera Epidemics in Kenya in 2007 to 2010 and 2015 to 2016
title_full Antibiotic-Resistant Vibrio cholerae O1 and Its SXT Elements Associated with Two Cholera Epidemics in Kenya in 2007 to 2010 and 2015 to 2016
title_fullStr Antibiotic-Resistant Vibrio cholerae O1 and Its SXT Elements Associated with Two Cholera Epidemics in Kenya in 2007 to 2010 and 2015 to 2016
title_full_unstemmed Antibiotic-Resistant Vibrio cholerae O1 and Its SXT Elements Associated with Two Cholera Epidemics in Kenya in 2007 to 2010 and 2015 to 2016
title_short Antibiotic-Resistant Vibrio cholerae O1 and Its SXT Elements Associated with Two Cholera Epidemics in Kenya in 2007 to 2010 and 2015 to 2016
title_sort antibiotic-resistant vibrio cholerae o1 and its sxt elements associated with two cholera epidemics in kenya in 2007 to 2010 and 2015 to 2016
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10269778/
https://www.ncbi.nlm.nih.gov/pubmed/37125926
http://dx.doi.org/10.1128/spectrum.04140-22
work_keys_str_mv AT shahmohammadmonir antibioticresistantvibriocholeraeo1anditssxtelementsassociatedwithtwocholeraepidemicsinkenyain2007to2010and2015to2016
AT bundimartin antibioticresistantvibriocholeraeo1anditssxtelementsassociatedwithtwocholeraepidemicsinkenyain2007to2010and2015to2016
AT kathiikocyrus antibioticresistantvibriocholeraeo1anditssxtelementsassociatedwithtwocholeraepidemicsinkenyain2007to2010and2015to2016
AT guyosora antibioticresistantvibriocholeraeo1anditssxtelementsassociatedwithtwocholeraepidemicsinkenyain2007to2010and2015to2016
AT galataamina antibioticresistantvibriocholeraeo1anditssxtelementsassociatedwithtwocholeraepidemicsinkenyain2007to2010and2015to2016
AT miringugabriel antibioticresistantvibriocholeraeo1anditssxtelementsassociatedwithtwocholeraepidemicsinkenyain2007to2010and2015to2016
AT ichinoseyoshio antibioticresistantvibriocholeraeo1anditssxtelementsassociatedwithtwocholeraepidemicsinkenyain2007to2010and2015to2016
AT yoshidalaymyint antibioticresistantvibriocholeraeo1anditssxtelementsassociatedwithtwocholeraepidemicsinkenyain2007to2010and2015to2016