Cargando…

Dynamic effects of prognostic factors and individual survival prediction for amyotrophic lateral sclerosis disease

OBJECTIVE: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting motor neurons, with broad heterogeneity in disease progression and survival in different patients. Therefore, an accurate prediction model will be crucial to implement timely interventions and prolong patient sur...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Baoyi, Geng, Xiang, Yu, Zhiyin, Zhang, Chengfeng, Chen, Zheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10270250/
https://www.ncbi.nlm.nih.gov/pubmed/37014017
http://dx.doi.org/10.1002/acn3.51771
Descripción
Sumario:OBJECTIVE: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting motor neurons, with broad heterogeneity in disease progression and survival in different patients. Therefore, an accurate prediction model will be crucial to implement timely interventions and prolong patient survival time. METHODS: A total of 1260 ALS patients from the PRO‐ACT database were included in the analysis. Their demographics, clinical variables, and death reports were included. We constructed an ALS dynamic Cox model through the landmarking approach. The predictive performance of the model at different landmark time points was evaluated by calculating the area under the curve (AUC) and Brier score. RESULTS: Three baseline covariates and seven time‐dependent covariates were selected to construct the ALS dynamic Cox model. For better prognostic analysis, this model identified dynamic effects of treatment, albumin, creatinine, calcium, hematocrit, and hemoglobin. Its prediction performance (at all landmark time points, AUC ≥ 0.70 and Brier score ≤ 0.12) was better than that of the traditional Cox model, and it predicted the dynamic 6‐month survival probability according to the longitudinal information of individual patients. INTERPRETATION: We developed an ALS dynamic Cox model with ALS longitudinal clinical trial datasets as the inputs. This model can not only capture the dynamic prognostic effect of both baseline and longitudinal covariates but also make individual survival predictions in real time, which are valuable for improving the prognosis of ALS patients and providing a reference for clinicians to make clinical decisions.