Cargando…
Differences across herds with different dairy breeds in daily milk yield based proxies for resilience
Global sustainability issues such as climate change, biodiversity loss and food security require food systems to become more resource efficient and better embedded in the local environment. This needs a transition towards more diverse, circular and low-input dairy farming systems with animals best s...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10270305/ https://www.ncbi.nlm.nih.gov/pubmed/37333496 http://dx.doi.org/10.3389/fgene.2023.1120073 |
Sumario: | Global sustainability issues such as climate change, biodiversity loss and food security require food systems to become more resource efficient and better embedded in the local environment. This needs a transition towards more diverse, circular and low-input dairy farming systems with animals best suited to the specific environmental conditions. When varying environmental challenges are posed to animals, cows need to become resilient to disturbances they face. This resilience of dairy cows for disturbances can be quantified using sensor features and resilience indicators derived from daily milk yield records. The aim of this study was to explore milk yield based sensor features and resilience indicators for different cattle groups according to their breeds and herds. To this end, we calculated 40 different features to describe the dynamics and variability in milk production of first parity dairy cows. After correction for milk production level, we found that various aspects of the milk yield dynamics, milk yield variability and perturbation characteristics indeed differed across herds and breeds. On farms with a lower breed proportion of Holstein Friesian across cows, there was more variability in the milk yield, but perturbations were less severe upon critical disturbances. Non-Holstein Friesian breeds had a more stable milk production with less (severe) perturbations. These differences can be attributed to differences in genetics, environments, or both. This study demonstrates the potential to use milk yield sensor features and resilience indicators as a tool to quantify how cows cope with more dynamic production conditions and select animals for features that best suit a farms’ breeding goal and specific environment. |
---|