Cargando…
Ocular following Eye Movements in Marmosets Follow Complex Motion Trajectories
Ocular following eye movements help stabilize images on the retina and offer a window to study motion interpretation by visual circuits. We use these ocular following eye movements to study motion integration behavior in the marmosets. We characterize ocular following responses in the marmosets usin...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society for Neuroscience
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10270315/ https://www.ncbi.nlm.nih.gov/pubmed/37236785 http://dx.doi.org/10.1523/ENEURO.0072-23.2023 |
Sumario: | Ocular following eye movements help stabilize images on the retina and offer a window to study motion interpretation by visual circuits. We use these ocular following eye movements to study motion integration behavior in the marmosets. We characterize ocular following responses in the marmosets using different moving stimuli such as dot patterns, gratings, and plaids. Marmosets track motion along different directions and exhibit spatial frequency and speed sensitivity, which closely matches the sensitivity reported in neurons from their motion-selective area MT. Marmosets are also able to track the integrated motion of plaids, with tracking direction consistent with an intersection of constraints model of motion integration. Marmoset ocular following responses are similar to responses in macaques and humans with certain species-specific differences in peak sensitivities. Such motion-sensitive eye movement behavior in combination with direct access to cortical circuitry makes the marmoset model well suited to study the neural basis of motion integration. |
---|