Cargando…
Two cold shock domain containing proteins trigger the development of infectious Trypanosoma brucei
Cold shock proteins are members of a family of DNA- and RNA-binding proteins with one or more evolutionarily conserved cold shock domain (CSD). These proteins have a wide variety of biological functions, including DNA-damage repair, mRNA stability, and regulation of transcription, splicing and trans...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10270622/ https://www.ncbi.nlm.nih.gov/pubmed/37276216 http://dx.doi.org/10.1371/journal.ppat.1011438 |
_version_ | 1785059353835864064 |
---|---|
author | Toh, Justin Y. Nkouawa, Agathe Dong, Gang Kolev, Nikolay G. Tschudi, Christian |
author_facet | Toh, Justin Y. Nkouawa, Agathe Dong, Gang Kolev, Nikolay G. Tschudi, Christian |
author_sort | Toh, Justin Y. |
collection | PubMed |
description | Cold shock proteins are members of a family of DNA- and RNA-binding proteins with one or more evolutionarily conserved cold shock domain (CSD). These proteins have a wide variety of biological functions, including DNA-damage repair, mRNA stability, and regulation of transcription, splicing and translation. We previously identified two CSD containing proteins, CSD1 and CSD2, in the protozoan parasite Trypanosoma brucei to be required for RBP6-driven metacyclic production, albeit at different steps of the developmental program. During metacyclogenesis T. brucei undergoes major morphological and metabolic changes that culminate in the establishment of quiescent metacyclic parasites and the acquisition of mammalian infectivity. To investigate the specific role of CSD1 and CSD2 in this process, we ectopically expressed CSD1 or CSD2 in non-infectious procyclic parasites and discovered that each protein is sufficient to produce infectious metacyclic parasites in 24 hours. Domain truncation assays determined that the N-terminal domain, but not the C-terminal domain, of CSD1 and CSD2 was required for metacyclic development. Furthermore, conserved amino acid residues in the CSD of CSD1 and CSD2, known to be important for binding nucleic acids, were found to be necessary for metacyclic production. Using single-end enhanced crosslinking and immunoprecipitation (seCLIP) we identified the specific binding motif of CSD1 and CSD2 as “ANACAU” and the bound mRNAs were enriched for biological processes, including lipid metabolism, microtubule-based movement and nucleocytoplasmic transport that are likely involved in the transition to bloodstream form-like cells. |
format | Online Article Text |
id | pubmed-10270622 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-102706222023-06-16 Two cold shock domain containing proteins trigger the development of infectious Trypanosoma brucei Toh, Justin Y. Nkouawa, Agathe Dong, Gang Kolev, Nikolay G. Tschudi, Christian PLoS Pathog Research Article Cold shock proteins are members of a family of DNA- and RNA-binding proteins with one or more evolutionarily conserved cold shock domain (CSD). These proteins have a wide variety of biological functions, including DNA-damage repair, mRNA stability, and regulation of transcription, splicing and translation. We previously identified two CSD containing proteins, CSD1 and CSD2, in the protozoan parasite Trypanosoma brucei to be required for RBP6-driven metacyclic production, albeit at different steps of the developmental program. During metacyclogenesis T. brucei undergoes major morphological and metabolic changes that culminate in the establishment of quiescent metacyclic parasites and the acquisition of mammalian infectivity. To investigate the specific role of CSD1 and CSD2 in this process, we ectopically expressed CSD1 or CSD2 in non-infectious procyclic parasites and discovered that each protein is sufficient to produce infectious metacyclic parasites in 24 hours. Domain truncation assays determined that the N-terminal domain, but not the C-terminal domain, of CSD1 and CSD2 was required for metacyclic development. Furthermore, conserved amino acid residues in the CSD of CSD1 and CSD2, known to be important for binding nucleic acids, were found to be necessary for metacyclic production. Using single-end enhanced crosslinking and immunoprecipitation (seCLIP) we identified the specific binding motif of CSD1 and CSD2 as “ANACAU” and the bound mRNAs were enriched for biological processes, including lipid metabolism, microtubule-based movement and nucleocytoplasmic transport that are likely involved in the transition to bloodstream form-like cells. Public Library of Science 2023-06-05 /pmc/articles/PMC10270622/ /pubmed/37276216 http://dx.doi.org/10.1371/journal.ppat.1011438 Text en © 2023 Toh et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Toh, Justin Y. Nkouawa, Agathe Dong, Gang Kolev, Nikolay G. Tschudi, Christian Two cold shock domain containing proteins trigger the development of infectious Trypanosoma brucei |
title | Two cold shock domain containing proteins trigger the development of infectious Trypanosoma brucei |
title_full | Two cold shock domain containing proteins trigger the development of infectious Trypanosoma brucei |
title_fullStr | Two cold shock domain containing proteins trigger the development of infectious Trypanosoma brucei |
title_full_unstemmed | Two cold shock domain containing proteins trigger the development of infectious Trypanosoma brucei |
title_short | Two cold shock domain containing proteins trigger the development of infectious Trypanosoma brucei |
title_sort | two cold shock domain containing proteins trigger the development of infectious trypanosoma brucei |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10270622/ https://www.ncbi.nlm.nih.gov/pubmed/37276216 http://dx.doi.org/10.1371/journal.ppat.1011438 |
work_keys_str_mv | AT tohjustiny twocoldshockdomaincontainingproteinstriggerthedevelopmentofinfectioustrypanosomabrucei AT nkouawaagathe twocoldshockdomaincontainingproteinstriggerthedevelopmentofinfectioustrypanosomabrucei AT donggang twocoldshockdomaincontainingproteinstriggerthedevelopmentofinfectioustrypanosomabrucei AT kolevnikolayg twocoldshockdomaincontainingproteinstriggerthedevelopmentofinfectioustrypanosomabrucei AT tschudichristian twocoldshockdomaincontainingproteinstriggerthedevelopmentofinfectioustrypanosomabrucei |