Cargando…
A transformer model for learning spatiotemporal contextual representation in fMRI data
Representation learning is a core component in data-driven modeling of various complex phenomena. Learning a contextually informative representation can especially benefit the analysis of fMRI data because of the complexities and dynamic dependencies present in such datasets. In this work, we propos...
Autores principales: | Asadi, Nima, Olson, Ingrid R., Obradovic, Zoran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MIT Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10270708/ https://www.ncbi.nlm.nih.gov/pubmed/37334006 http://dx.doi.org/10.1162/netn_a_00281 |
Ejemplares similares
-
The backbone network of dynamic functional connectivity
por: Asadi, Nima, et al.
Publicado: (2021) -
Representation learning of resting state fMRI with variational autoencoder
por: Kim, Jung-Hoon, et al.
Publicado: (2021) -
A heuristic information cluster search approach for precise functional brain mapping
por: Asadi, Nima, et al.
Publicado: (2020) -
Sparse coding representation of emotional brain states in fMRI data
por: Mamlouk, Amir Madany, et al.
Publicado: (2010) -
The representation of the verb's argument structure as disclosed by fMRI
por: Assadollahi, Ramin, et al.
Publicado: (2009)