Cargando…
Fast construction of SARS-CoV-2 associated plasmid library using parallel cloning method
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a significant impact on global health. To address the urgent need for plasmids containing SARS-CoV-2 sequences in research, we have developed a high-throughput FastCloning platform for the constructi...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10270729/ https://www.ncbi.nlm.nih.gov/pubmed/37342585 http://dx.doi.org/10.1016/j.heliyon.2023.e17364 |
Sumario: | The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a significant impact on global health. To address the urgent need for plasmids containing SARS-CoV-2 sequences in research, we have developed a high-throughput FastCloning platform for the construction of associated plasmids. Our platform uses a FastCloning method to construct a plasmid library from 29 ORFs of the virus and 20 commonly used vectors in the lab. The library contains 536 recombinant vectors, with a highly positive clone success rate of 92.4%. Our study provides a rapid and efficient approach to constructing a large plasmid library for SARS-CoV-2 research. |
---|