Cargando…

Potential Antimicrobe Producer of Endophytic Bacteria from Yellow Root Plant (Arcangelisia flava (L.)) Originated from Enggano Island

Exploration studies of endophytic bacteria from Arcangelisia flava (L.) and their potential have not much been conducted. This research aims to explore and characterize the antimicrobial activity of endophytic bacteria in A. flava against pathogenic bacteria. This research consists of several steps...

Descripción completa

Detalles Bibliográficos
Autores principales: Sipriyadi, Masrukhin, Wibowo, Risky Hadi, Darwis, Welly, Yudha, Salprima, Purnaningsih, Ismu, Siboro, Resli
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10270767/
https://www.ncbi.nlm.nih.gov/pubmed/37332491
http://dx.doi.org/10.1155/2022/6435202
_version_ 1785059385435750400
author Sipriyadi
Masrukhin
Wibowo, Risky Hadi
Darwis, Welly
Yudha, Salprima
Purnaningsih, Ismu
Siboro, Resli
author_facet Sipriyadi
Masrukhin
Wibowo, Risky Hadi
Darwis, Welly
Yudha, Salprima
Purnaningsih, Ismu
Siboro, Resli
author_sort Sipriyadi
collection PubMed
description Exploration studies of endophytic bacteria from Arcangelisia flava (L.) and their potential have not much been conducted. This research aims to explore and characterize the antimicrobial activity of endophytic bacteria in A. flava against pathogenic bacteria. This research consists of several steps including the isolation of bacteria, screening of the antimicrobial activity assay using the dual cross streak method, molecular identification through 16s rDNA analysis, and characterization of bioactive compound production through PKS-NRPS gene detection and GC-MS analysis. There are 29 endophytic bacteria that were successfully isolated from A. flava. The antimicrobial activity showed that there are four potential isolates AKEBG21, AKEBG23, AKEBG25, and AKEBG28 that can inhibit the growth of pathogenic bacteria such as Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The 16S rDNA sequence analysis showed that these isolates are identified as Bacillus cereus. These four isolates are identified as able to produce the bioactive compounds through the detection of polyketide synthase (PKS) and nonribosomal peptide synthase (NRPS)-encoding genes. B. cereus AKEBG23 has the highest inhibition against pathogenic bacteria, and according to the GC-MS analysis, five major compounds are allegedly involved in its antimicrobial activity such as butylated hydroxytoluene (BHT), diisooctyl phthalate, E-15-heptadecenal, 1-heneicosanol, and E-14-hexadecenal. This result suggested that B. cereus AKEBG23 as the endophytic bacterium from A. flava has a beneficial role as well as the plant itself. The bacterium produces several bioactive compounds that are allegedly involved in its antimicrobial activity against pathogenic bacteria.
format Online
Article
Text
id pubmed-10270767
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-102707672023-06-16 Potential Antimicrobe Producer of Endophytic Bacteria from Yellow Root Plant (Arcangelisia flava (L.)) Originated from Enggano Island Sipriyadi Masrukhin Wibowo, Risky Hadi Darwis, Welly Yudha, Salprima Purnaningsih, Ismu Siboro, Resli Int J Microbiol Research Article Exploration studies of endophytic bacteria from Arcangelisia flava (L.) and their potential have not much been conducted. This research aims to explore and characterize the antimicrobial activity of endophytic bacteria in A. flava against pathogenic bacteria. This research consists of several steps including the isolation of bacteria, screening of the antimicrobial activity assay using the dual cross streak method, molecular identification through 16s rDNA analysis, and characterization of bioactive compound production through PKS-NRPS gene detection and GC-MS analysis. There are 29 endophytic bacteria that were successfully isolated from A. flava. The antimicrobial activity showed that there are four potential isolates AKEBG21, AKEBG23, AKEBG25, and AKEBG28 that can inhibit the growth of pathogenic bacteria such as Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The 16S rDNA sequence analysis showed that these isolates are identified as Bacillus cereus. These four isolates are identified as able to produce the bioactive compounds through the detection of polyketide synthase (PKS) and nonribosomal peptide synthase (NRPS)-encoding genes. B. cereus AKEBG23 has the highest inhibition against pathogenic bacteria, and according to the GC-MS analysis, five major compounds are allegedly involved in its antimicrobial activity such as butylated hydroxytoluene (BHT), diisooctyl phthalate, E-15-heptadecenal, 1-heneicosanol, and E-14-hexadecenal. This result suggested that B. cereus AKEBG23 as the endophytic bacterium from A. flava has a beneficial role as well as the plant itself. The bacterium produces several bioactive compounds that are allegedly involved in its antimicrobial activity against pathogenic bacteria. Hindawi 2022-11-16 /pmc/articles/PMC10270767/ /pubmed/37332491 http://dx.doi.org/10.1155/2022/6435202 Text en Copyright © 2022 Sipriyadi et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Sipriyadi
Masrukhin
Wibowo, Risky Hadi
Darwis, Welly
Yudha, Salprima
Purnaningsih, Ismu
Siboro, Resli
Potential Antimicrobe Producer of Endophytic Bacteria from Yellow Root Plant (Arcangelisia flava (L.)) Originated from Enggano Island
title Potential Antimicrobe Producer of Endophytic Bacteria from Yellow Root Plant (Arcangelisia flava (L.)) Originated from Enggano Island
title_full Potential Antimicrobe Producer of Endophytic Bacteria from Yellow Root Plant (Arcangelisia flava (L.)) Originated from Enggano Island
title_fullStr Potential Antimicrobe Producer of Endophytic Bacteria from Yellow Root Plant (Arcangelisia flava (L.)) Originated from Enggano Island
title_full_unstemmed Potential Antimicrobe Producer of Endophytic Bacteria from Yellow Root Plant (Arcangelisia flava (L.)) Originated from Enggano Island
title_short Potential Antimicrobe Producer of Endophytic Bacteria from Yellow Root Plant (Arcangelisia flava (L.)) Originated from Enggano Island
title_sort potential antimicrobe producer of endophytic bacteria from yellow root plant (arcangelisia flava (l.)) originated from enggano island
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10270767/
https://www.ncbi.nlm.nih.gov/pubmed/37332491
http://dx.doi.org/10.1155/2022/6435202
work_keys_str_mv AT sipriyadi potentialantimicrobeproducerofendophyticbacteriafromyellowrootplantarcangelisiaflavaloriginatedfromengganoisland
AT masrukhin potentialantimicrobeproducerofendophyticbacteriafromyellowrootplantarcangelisiaflavaloriginatedfromengganoisland
AT wiboworiskyhadi potentialantimicrobeproducerofendophyticbacteriafromyellowrootplantarcangelisiaflavaloriginatedfromengganoisland
AT darwiswelly potentialantimicrobeproducerofendophyticbacteriafromyellowrootplantarcangelisiaflavaloriginatedfromengganoisland
AT yudhasalprima potentialantimicrobeproducerofendophyticbacteriafromyellowrootplantarcangelisiaflavaloriginatedfromengganoisland
AT purnaningsihismu potentialantimicrobeproducerofendophyticbacteriafromyellowrootplantarcangelisiaflavaloriginatedfromengganoisland
AT sibororesli potentialantimicrobeproducerofendophyticbacteriafromyellowrootplantarcangelisiaflavaloriginatedfromengganoisland