Cargando…

DFT and QSAR studies of PTFE/ZnO/SiO(2) nanocomposite

Polytetrafluoroethylene (PTFE) is one of the most significant fluoropolymers, and one of the most recent initiatives is to increase its performance by using metal oxides (MOs). Consequently, the surface modifications of PTFE with two metal oxides (MOs), SiO(2) and ZnO, individually and as a mixture...

Descripción completa

Detalles Bibliográficos
Autores principales: Ezzat, Hend A., Hegazy, Maroof A., Ghoneim, Rasha, Zahran, Heba Y., Yahia, Ibrahim S., Elhaes, Hanan, Refaat, Ahmed, Ibrahim, Medhat A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10272118/
https://www.ncbi.nlm.nih.gov/pubmed/37322021
http://dx.doi.org/10.1038/s41598-022-19490-0
Descripción
Sumario:Polytetrafluoroethylene (PTFE) is one of the most significant fluoropolymers, and one of the most recent initiatives is to increase its performance by using metal oxides (MOs). Consequently, the surface modifications of PTFE with two metal oxides (MOs), SiO(2) and ZnO, individually and as a mixture of the two MOs, were modeled using density functional theory (DFT). The B3LYPL/LANL2DZ model was used in the studies conducted to follow up the changes in electronic properties. The total dipole moment (TDM) and HOMO/LUMO band gap energy (∆E) of PTFE, which were 0.000 Debye and 8.517 eV respectively, were enhanced to 13.008 Debye and 0.690 eV in the case of PTFE/4ZnO/4SiO(2). Moreover, with increasing nano filler (PTFE/8ZnO/8SiO(2)), TDM changed to 10.605 Debye and ∆E decreased to 0.273 eV leading to further improvement in the electronic properties. The molecular electrostatic potential (MESP) and quantitative structure activity relationship (QSAR) studies revealed that surface modification of PTFE with ZnO and SiO(2) increased its electrical and thermal stability. The improved PTFE/ZnO/SiO(2) composite can, therefore, be used as a self-cleaning layer for astronaut suits based on the findings of relatively high mobility, minimal reactivity to the surrounding environment, and thermal stability.