Cargando…
Reaction performance prediction with an extrapolative and interpretable graph model based on chemical knowledge
Accurate prediction of reactivity and selectivity provides the desired guideline for synthetic development. Due to the high-dimensional relationship between molecular structure and synthetic function, it is challenging to achieve the predictive modelling of synthetic transformation with the required...
Autores principales: | Li, Shu-Wen, Xu, Li-Cheng, Zhang, Cheng, Zhang, Shuo-Qing, Hong, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10272164/ https://www.ncbi.nlm.nih.gov/pubmed/37322041 http://dx.doi.org/10.1038/s41467-023-39283-x |
Ejemplares similares
-
Bridging Chemical Knowledge and Machine Learning for Performance Prediction of Organic Synthesis
por: Zhang, Shuo‐Qing, et al.
Publicado: (2022) -
Prediction of adverse drug reactions based on knowledge graph embedding
por: Zhang, Fei, et al.
Publicado: (2021) -
Chemical reaction network knowledge graphs: the OntoRXN ontology
por: Garay-Ruiz, Diego, et al.
Publicado: (2022) -
Evolution-strengthened knowledge graph enables predicting the targetability and druggability of genes
por: Quan, Yuan, et al.
Publicado: (2023) -
Prediction of Diabetic Macular Edema Using Knowledge Graph
por: Li, Zhi-Qing, et al.
Publicado: (2023)