Cargando…

Extreme climatic events to intensify over the Lake Victoria Basin under global warming

This paper presents an analysis of future precipitation patterns over the Lake Victoria Basin, East Africa, using bias-corrected CMIP6 model projections. A mean increase of about 5% in mean annual (ANN) and seasonal [March–May (MAM), June–August (JJA), and October–December (OND)] precipitation clima...

Descripción completa

Detalles Bibliográficos
Autores principales: Ogega, Obed M., Scoccimarro, Enrico, Misiani, Herbert, Mbugua, James
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10272193/
https://www.ncbi.nlm.nih.gov/pubmed/37322050
http://dx.doi.org/10.1038/s41598-023-36756-3
Descripción
Sumario:This paper presents an analysis of future precipitation patterns over the Lake Victoria Basin, East Africa, using bias-corrected CMIP6 model projections. A mean increase of about 5% in mean annual (ANN) and seasonal [March–May (MAM), June–August (JJA), and October–December (OND)] precipitation climatology is expected over the domain by mid-century (2040–2069). The changes intensify towards the end of the century (2070–2099) with an increase in mean precipitation of about 16% (ANN), 10% (MAM), and 18% (OND) expected, relative to the 1985–2014 baseline period. Additionally, the mean daily precipitation intensity (SDII), the maximum 5-day precipitation values (RX5Day), and the heavy precipitation events—represented by the width of the right tail distribution of precipitation (99p–90p)—show an increase of 16%, 29%, and 47%, respectively, by the end of the century. The projected changes have a substantial implication for the region—which is already experiencing conflicts over water and water-related resources.