Cargando…
Efficient interatomic descriptors for accurate machine learning force fields of extended molecules
Machine learning force fields (MLFFs) are gradually evolving towards enabling molecular dynamics simulations of molecules and materials with ab initio accuracy but at a small fraction of the computational cost. However, several challenges remain to be addressed to enable predictive MLFF simulations...
Autores principales: | Kabylda, Adil, Vassilev-Galindo, Valentin, Chmiela, Stefan, Poltavsky, Igor, Tkatchenko, Alexandre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10272221/ https://www.ncbi.nlm.nih.gov/pubmed/37322039 http://dx.doi.org/10.1038/s41467-023-39214-w |
Ejemplares similares
-
Author Correction: Efficient interatomic descriptors for accurate machine learning force fields of extended molecules
por: Kabylda, Adil, et al.
Publicado: (2023) -
Accurate global machine learning force fields for molecules with hundreds of atoms
por: Chmiela, Stefan, et al.
Publicado: (2023) -
Machine learning of accurate energy-conserving molecular force fields
por: Chmiela, Stefan, et al.
Publicado: (2017) -
Machine Learning Force Fields
por: Unke, Oliver T., et al.
Publicado: (2021) -
BIGDML—Towards accurate quantum machine learning force fields for materials
por: Sauceda, Huziel E., et al.
Publicado: (2022)