Cargando…
Machine learning assisted remote forestry health assessment: a comprehensive state of the art review
Forests are suffering water stress due to climate change; in some parts of the globe, forests are being exposed to the highest temperatures historically recorded. Machine learning techniques combined with robotic platforms and artificial vision systems have been used to provide remote monitoring of...
Autores principales: | Estrada, Juan Sebastián, Fuentes, Andrés, Reszka, Pedro, Auat Cheein, Fernando |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10272373/ https://www.ncbi.nlm.nih.gov/pubmed/37332724 http://dx.doi.org/10.3389/fpls.2023.1139232 |
Ejemplares similares
-
Machinery for potato harvesting: a state-of-the-art review
por: Johnson, Ciaran Miceal, et al.
Publicado: (2023) -
Retrieval of Vegetation Indices Related to Leaf Water Content from a Single Index: A Case Study of Eucalyptus globulus (Labill.) and Pinus radiata (D. Don.)
por: Villacrés, Juan, et al.
Publicado: (2021) -
Foliar Moisture Content from the Spectral Signature for Wildfire Risk Assessments in Valparaíso-Chile
por: Villacrés, Juan, et al.
Publicado: (2019) -
Artificial intelligence for the early detection of colorectal cancer: A comprehensive review of its advantages and misconceptions
por: Viscaino, Michelle, et al.
Publicado: (2021) -
Forestry Digital Twin With Machine Learning in Landsat 7 Data
por: Jiang, Xuetao, et al.
Publicado: (2022)