Cargando…
An integrated convolutional neural network for classifying small pulmonary solid nodules
Achieving accurate classification of benign and malignant pulmonary nodules is essential for treating some diseases. However, traditional typing methods have difficulty obtaining satisfactory results on small pulmonary solid nodules, mainly caused by two aspects: (1) noise interference from other ti...
Autores principales: | Mei, Mengqing, Ye, Zhiwei, Zha, Yunfei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10272407/ https://www.ncbi.nlm.nih.gov/pubmed/37332867 http://dx.doi.org/10.3389/fnins.2023.1152222 |
Ejemplares similares
-
Automatic Categorization and Scoring of Solid, Part-Solid and Non-Solid Pulmonary Nodules in CT Images with Convolutional Neural Network
por: Tu, Xiaoguang, et al.
Publicado: (2017) -
Epileptic seizure detection with deep EEG features by convolutional neural network and shallow classifiers
por: Zeng, Wei, et al.
Publicado: (2023) -
Contextual Integration in Cortical and Convolutional Neural Networks
por: Iyer, Ramakrishnan, et al.
Publicado: (2020) -
Transfer of Learning in the Convolutional Neural Networks on Classifying Geometric Shapes Based on Local or Global Invariants
por: Zheng, Yufeng, et al.
Publicado: (2021) -
Multisite Autism Spectrum Disorder Classification Using Convolutional Neural Network Classifier and Individual Morphological Brain Networks
por: Gao, Jingjing, et al.
Publicado: (2021)