Cargando…
Subject-independent EEG classification based on a hybrid neural network
A brain-computer interface (BCI) based on the electroencephalograph (EEG) signal is a novel technology that provides a direct pathway between human brain and outside world. For a traditional subject-dependent BCI system, a calibration procedure is required to collect sufficient data to build a subje...
Autores principales: | Zhang, Hao, Ji, Hongfei, Yu, Jian, Li, Jie, Jin, Lingjing, Liu, Lingyu, Bai, Zhongfei, Ye, Chen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10272421/ https://www.ncbi.nlm.nih.gov/pubmed/37332856 http://dx.doi.org/10.3389/fnins.2023.1124089 |
Ejemplares similares
-
A sequential learning model with GNN for EEG-EMG-based stroke rehabilitation BCI
por: Li, Haoyang, et al.
Publicado: (2023) -
Deep Neural Network for EEG Signal-Based Subject-Independent Imaginary Mental Task Classification
por: Siddiqui, Farheen, et al.
Publicado: (2023) -
A Parallel Multiscale Filter Bank Convolutional Neural Networks for Motor Imagery EEG Classification
por: Wu, Hao, et al.
Publicado: (2019) -
Cross-Subject EEG Emotion Recognition With Self-Organized Graph Neural Network
por: Li, Jingcong, et al.
Publicado: (2021) -
A hybrid deep neural network for classification of schizophrenia using EEG Data
por: Sun, Jie, et al.
Publicado: (2021)