Cargando…
Targeting the PRC2-dependent epigenetic program alleviates urinary tract infections
Urinary tract infection (UTI) is a pervasive health problem worldwide. Patients with a history of UTIs suffer increased risk of recurrent infections, a major risk of antibiotic resistance. Here, we show that bladder infections induce expression of Ezh2 in bladder urothelial cells. Ezh2 is the methyl...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10272480/ https://www.ncbi.nlm.nih.gov/pubmed/37332606 http://dx.doi.org/10.1016/j.isci.2023.106925 |
Sumario: | Urinary tract infection (UTI) is a pervasive health problem worldwide. Patients with a history of UTIs suffer increased risk of recurrent infections, a major risk of antibiotic resistance. Here, we show that bladder infections induce expression of Ezh2 in bladder urothelial cells. Ezh2 is the methyltransferase of polycomb repressor complex 2 (PRC2)—a potent epigenetic regulator. Urothelium-specific inactivation of PRC2 results in reduced urine bacterial burden, muted inflammatory response, and decreased activity of the NF-κB signaling pathway. PRC2 inactivation also facilitates proper regeneration after urothelial damage from UTIs, by attenuating basal cell hyperplasia and increasing urothelial differentiation. In addition, treatment with Ezh2-specific small-molecule inhibitors improves outcomes of the chronic and severe bladder infections in mice. These findings collectively suggest that the PRC2-dependent epigenetic reprograming controls the amplitude of inflammation and severity of UTIs and that Ezh2 inhibitors may be a viable non-antibiotic strategy to manage chronic and severe UTIs. |
---|