Cargando…
A comparison of three methods to determine the subject matter in textual data
This study compares three different methods commonly employed for the determination and interpretation of the subject matter of large corpuses of textual data. The methods reviewed are: (1) topic modeling, (2) community or group detection, and (3) cluster analysis of semantic networks. Two different...
Autores principales: | Barnett, George A., Calabrese, Christopher, Ruiz, Jeanette B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10272525/ https://www.ncbi.nlm.nih.gov/pubmed/37334104 http://dx.doi.org/10.3389/frma.2023.1104691 |
Ejemplares similares
-
Representing a Heterogeneous Pharmaceutical Knowledge-Graph with Textual Information
por: Asada, Masaki, et al.
Publicado: (2021) -
For Augustinian Archival Openness and Laggardly Sharing: Trustworthy Archiving and Sharing of Social Science Data From Identifiable Human Subjects
por: Zeitlyn, David
Publicado: (2021) -
The core of the matter: How do scientists judge trustworthiness of physical samples?
por: Darch, Peter Thomas
Publicado: (2022) -
Large Scale Subject Category Classification of Scholarly Papers With Deep Attentive Neural Networks
por: Kandimalla, Bharath, et al.
Publicado: (2021) -
Indigenous Peoples and research: self-determination in research governance
por: Garba, Ibrahim, et al.
Publicado: (2023)