Cargando…
Evaluation of kernel low-rank compressed sensing in preclinical diffusion magnetic resonance imaging
Compressed sensing (CS) is widely used to accelerate clinical diffusion MRI acquisitions, but it is not widely used in preclinical settings yet. In this study, we optimized and compared several CS reconstruction methods for diffusion imaging. Different undersampling patterns and two reconstruction a...
Autores principales: | de Souza, Diego Alves Rodrigues, Mathieu, Hervé, Deloulme, Jean-Christophe, Barbier, Emmanuel L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10272537/ https://www.ncbi.nlm.nih.gov/pubmed/37332879 http://dx.doi.org/10.3389/fnins.2023.1172830 |
Ejemplares similares
-
Compressive Sensing via Nonlocal Smoothed Rank Function
por: Fan, Ya-Ru, et al.
Publicado: (2016) -
Kernelized rank learning for personalized drug recommendation
por: He, Xiao, et al.
Publicado: (2018) -
Ranking Support Vector Machine with Kernel Approximation
por: Chen, Kai, et al.
Publicado: (2017) -
Optimal Superpixel Kernel-Based Kernel Low-Rank and Sparsity Representation for Brain Tumour Segmentation
por: Ge, Ting, et al.
Publicado: (2022) -
Magnetic resonance angiography with compressed sensing: An evaluation of moyamoya disease
por: Yamamoto, Takayuki, et al.
Publicado: (2018)