Cargando…
ST-YOLOA: a Swin-transformer-based YOLO model with an attention mechanism for SAR ship detection under complex background
A synthetic aperture radar (SAR) image is crucial for ship detection in computer vision. Due to the background clutter, pose variations, and scale changes, it is a challenge to construct a SAR ship detection model with low false-alarm rates and high accuracy. Therefore, this paper proposes a novel S...
Autores principales: | Zhao, Kai, Lu, Ruitao, Wang, Siyu, Yang, Xiaogang, Li, Qingge, Fan, Jiwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10272714/ https://www.ncbi.nlm.nih.gov/pubmed/37334169 http://dx.doi.org/10.3389/fnbot.2023.1170163 |
Ejemplares similares
-
CAA-YOLO: Combined-Attention-Augmented YOLO for Infrared Ocean Ships Detection
por: Ye, Jing, et al.
Publicado: (2022) -
FEA-Swin: Foreground Enhancement Attention Swin Transformer Network for Accurate UAV-Based Dense Object Detection
por: Xu, Wenyu, et al.
Publicado: (2022) -
S-Swin Transformer: simplified Swin Transformer model for offline handwritten Chinese character recognition
por: Dan, Yongping, et al.
Publicado: (2022) -
Swin-MFA: A Multi-Modal Fusion Attention Network Based on Swin-Transformer for Low-Light Image Human Segmentation
por: Yi, Xunpeng, et al.
Publicado: (2022) -
Super-Resolution Swin Transformer and Attention Network for Medical CT Imaging
por: Hu, Jianhua, et al.
Publicado: (2022)