Cargando…
CNN-based automatic segmentations and radiomics feature reliability on contrast-enhanced ultrasound images for renal tumors
OBJECTIVE: To investigate the feasibility and efficiency of automatic segmentation of contrast-enhanced ultrasound (CEUS) images in renal tumors by convolutional neural network (CNN) based models and their further application in radiomic analysis. MATERIALS AND METHODS: From 94 pathologically confir...
Autores principales: | Yang, Yin, Chen, Fei, Liang, Hongmei, Bai, Yun, Wang, Zhen, Zhao, Lei, Ma, Sai, Niu, Qinghua, Li, Fan, Xie, Tianwu, Cai, Yingyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10272725/ https://www.ncbi.nlm.nih.gov/pubmed/37333811 http://dx.doi.org/10.3389/fonc.2023.1166988 |
Ejemplares similares
-
Multiple U-Net-Based Automatic Segmentations and Radiomics Feature Stability on Ultrasound Images for Patients With Ovarian Cancer
por: Jin, Juebin, et al.
Publicado: (2021) -
CNN-Based Quality Assurance for Automatic Segmentation of Breast Cancer in Radiotherapy
por: Chen, Xinyuan, et al.
Publicado: (2020) -
Exploring the Value of Radiomics Features Based on B-Mode and Contrast-Enhanced Ultrasound in Discriminating the Nature of Thyroid Nodules
por: Guo, Shi Yan, et al.
Publicado: (2021) -
Conventional ultrasound and contrast-enhanced ultrasound radiomics in breast cancer and molecular subtype diagnosis
por: Gong, Xuantong, et al.
Publicado: (2023) -
The Impact of Artificial Intelligence CNN Based Denoising on FDG PET Radiomics
por: Jaudet, Cyril, et al.
Publicado: (2021)