Cargando…
Prediction of Sleep Stages Via Deep Learning Using Smartphone Audio Recordings in Home Environments: Model Development and Validation
BACKGROUND: The growing public interest and awareness regarding the significance of sleep is driving the demand for sleep monitoring at home. In addition to various commercially available wearable and nearable devices, sound-based sleep staging via deep learning is emerging as a decent alternative f...
Autores principales: | Tran, Hai Hong, Hong, Jung Kyung, Jang, Hyeryung, Jung, Jinhwan, Kim, Jongmok, Hong, Joonki, Lee, Minji, Kim, Jeong-Whun, Kushida, Clete A, Lee, Dongheon, Kim, Daewoo, Yoon, In-Young |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10273036/ https://www.ncbi.nlm.nih.gov/pubmed/37261889 http://dx.doi.org/10.2196/46216 |
Ejemplares similares
-
End-to-End Sleep Staging Using Nocturnal Sounds from Microphone Chips for Mobile Devices
por: Hong, Joonki, et al.
Publicado: (2022) -
Accuracy of 11 Wearable, Nearable, and Airable Consumer Sleep Trackers: Prospective Multicenter Validation Study
por: Lee, Taeyoung, et al.
Publicado: (2023) -
Real-Time Detection of Sleep Apnea Based on Breathing Sounds and Prediction Reinforcement Using Home Noises: Algorithm Development and Validation
por: Le, Vu Linh, et al.
Publicado: (2023) -
Confidence-Based Framework Using Deep Learning for Automated Sleep Stage Scoring
por: Hong, Jung Kyung, et al.
Publicado: (2021) -
The Relationship Between Smartphone-Recorded Environmental Audio and Symptomatology of Anxiety and Depression: Exploratory Study
por: Di Matteo, Daniel, et al.
Publicado: (2020)