Cargando…
Computational insights into mRNA and protein dynamics underlying synaptic plasticity rules
Recent advances in experimental techniques provide an unprecedented peek into the intricate molecular dynamics inside synapses and dendrites. The experimental insights into the molecular turnover revealed that such processes as diffusion, active transport, spine uptake, and local protein synthesis c...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10274545/ https://www.ncbi.nlm.nih.gov/pubmed/36963534 http://dx.doi.org/10.1016/j.mcn.2023.103846 |
Sumario: | Recent advances in experimental techniques provide an unprecedented peek into the intricate molecular dynamics inside synapses and dendrites. The experimental insights into the molecular turnover revealed that such processes as diffusion, active transport, spine uptake, and local protein synthesis could dynamically modulate the copy numbers of plasticity-related molecules in synapses. Subsequently, theoretical models were designed to understand the interaction of these processes better and to explain how local synaptic plasticity cues can up or down-regulate the molecular copy numbers across synapses. In this review, we discuss the recent advances in experimental techniques and computational models to highlight how these complementary approaches can provide insight into molecular cross-talk across synapses, ultimately allowing us to develop biologically-inspired neural network models to understand brain function. |
---|