Cargando…
Efficient Analysis of Proteome-wide FPOP Data by FragPipe
Monitoring protein structure before and after perturbations can give insights into the role and function of proteins. Fast photochemical oxidation of proteins (FPOP) coupled with mass spectrometry (MS) allows monitoring of structural rearrangements by exposing proteins to OH radicals that oxidize so...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10274679/ https://www.ncbi.nlm.nih.gov/pubmed/37333157 http://dx.doi.org/10.1101/2023.06.01.543263 |
Sumario: | Monitoring protein structure before and after perturbations can give insights into the role and function of proteins. Fast photochemical oxidation of proteins (FPOP) coupled with mass spectrometry (MS) allows monitoring of structural rearrangements by exposing proteins to OH radicals that oxidize solvent accessible residues, indicating protein regions undergoing movement. Some of the benefits of FPOP include high throughput and lack of scrambling due to label irreversibility. However, the challenges of processing FPOP data have thus far limited its proteome-scale uses. Here, we present a computational workflow for fast and sensitive analysis of FPOP datasets. Our workflow combines the speed of MSFragger search with a unique hybrid search method to restrict the large search space of FPOP modifications. Together, these features enable more than 10-fold faster FPOP searches that identify 50% more modified peptide spectra than previous methods. We hope this new workflow will increase the accessibility of FPOP to enable more protein structure and function relationships to be explored. |
---|