Cargando…
Learning Peptide Properties with Positive Examples Only
Deep learning can create accurate predictive models by exploiting existing large-scale experimental data, and guide the design of molecules. However, a major barrier is the requirement of both positive and negative examples in the classical supervised learning frameworks. Notably, most peptide datab...
Autores principales: | Ansari, Mehrad, White, Andrew D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10274696/ https://www.ncbi.nlm.nih.gov/pubmed/37333233 http://dx.doi.org/10.1101/2023.06.01.543289 |
Ejemplares similares
-
Serverless Prediction
of Peptide Properties with Recurrent
Neural Networks
por: Ansari, Mehrad, et al.
Publicado: (2023) -
Learning gene regulatory networks from only positive and unlabeled data
por: Cerulo, Luigi, et al.
Publicado: (2010) -
Mixing: properties and examples
por: Doukhan, Paul
Publicado: (1994) -
ExamPle: explainable deep learning framework for the prediction of plant small secreted peptides
por: Li, Zhongshen, et al.
Publicado: (2023) -
Investigating Active Learning and Meta-Learning for Iterative Peptide
Design
por: Barrett, Rainier, et al.
Publicado: (2020)