Cargando…
Spatial Transcriptomic Cell-type Deconvolution Using Graph Neural Networks
Spatially resolved transcriptomics performs high-throughput measurement of transcriptomes while preserving spatial information about the cellular organizations. However, many spatially resolved transcriptomic technologies can only distinguish spots consisting of a mixture of cells instead of working...
Autores principales: | Li, Yawei, Luo, Yuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10274700/ https://www.ncbi.nlm.nih.gov/pubmed/37333198 http://dx.doi.org/10.1101/2023.03.10.532112 |
Ejemplares similares
-
Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST
por: Long, Yahui, et al.
Publicado: (2023) -
Spatially Informed Cell Type Deconvolution for Spatial Transcriptomics
por: Ma, Ying, et al.
Publicado: (2022) -
DSTG: deconvoluting spatial transcriptomics data through graph-based artificial intelligence
por: Song, Qianqian, et al.
Publicado: (2021) -
Deconvolution algorithms for inference of the cell-type composition of the spatial transcriptome
por: Zhang, Yingkun, et al.
Publicado: (2022) -
SpatialDWLS: accurate deconvolution of spatial transcriptomic data
por: Dong, Rui, et al.
Publicado: (2021)