Cargando…

Social reward network connectivity differs between autistic and neurotypical youth during social interaction

A core feature of autism is difficulties with social interaction. Atypical social motivation is proposed to underlie these difficulties. However, prior work testing this hypothesis has shown mixed support and has been limited in its ability to understand real-world social-interactive processes in au...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Hua, Moraczewski, Dustin, McNaughton, Kathryn A., Warnell, Katherine R., Alkire, Diana, Merchant, Junaid S., Kirby, Laura A., Yarger, Heather A., Redcay, Elizabeth
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10274709/
https://www.ncbi.nlm.nih.gov/pubmed/37333161
http://dx.doi.org/10.1101/2023.06.05.543807
Descripción
Sumario:A core feature of autism is difficulties with social interaction. Atypical social motivation is proposed to underlie these difficulties. However, prior work testing this hypothesis has shown mixed support and has been limited in its ability to understand real-world social-interactive processes in autism. We attempted to address these limitations by scanning neurotypical and autistic youth (n = 86) during a text-based reciprocal social interaction that mimics a “live” chat and elicits social reward processes. We focused on task-evoked functional connectivity (FC) of regions responsible for motivational-reward and mentalizing processes within the broader social reward circuitry. We found that task-evoked FC between these regions was significantly modulated by social interaction and receipt of social-interactive reward. Compared to neurotypical peers, autistic youth showed significantly greater task-evoked connectivity of core regions in the mentalizing network (e.g., posterior superior temporal sulcus) and the amygdala, a key node in the reward network. Furthermore, across groups, the connectivity strength between these mentalizing and reward regions was negatively correlated with self-reported social motivation and social reward during the scanner task. Our results highlight an important role of FC within the broader social reward circuitry for social-interactive reward. Specifically, greater context-dependent FC (i.e., differences between social engagement and non-social engagement) may indicate an increased “neural effort” during social reward and relate to differences in social motivation within autistic and neurotypical populations.