Cargando…
Asymmetric distribution of color-opponent response types across mouse visual cortex supports superior color vision in the sky
Color is an important visual feature that informs behavior, and the retinal basis for color vision has been studied across various vertebrate species. While we know how color information is processed in visual brain areas of primates, we have limited understanding of how it is organized beyond the r...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10274736/ https://www.ncbi.nlm.nih.gov/pubmed/37333280 http://dx.doi.org/10.1101/2023.06.01.543054 |
_version_ | 1785059788410847232 |
---|---|
author | Franke, Katrin Cai, Chenchen Ponder, Kayla Fu, Jiakun Sokoloski, Sacha Berens, Philipp Tolias, Andreas S. |
author_facet | Franke, Katrin Cai, Chenchen Ponder, Kayla Fu, Jiakun Sokoloski, Sacha Berens, Philipp Tolias, Andreas S. |
author_sort | Franke, Katrin |
collection | PubMed |
description | Color is an important visual feature that informs behavior, and the retinal basis for color vision has been studied across various vertebrate species. While we know how color information is processed in visual brain areas of primates, we have limited understanding of how it is organized beyond the retina in other species, including most dichromatic mammals. In this study, we systematically characterized how color is represented in the primary visual cortex (V1) of mice. Using large-scale neuronal recordings and a luminance and color noise stimulus, we found that more than a third of neurons in mouse V1 are color-opponent in their receptive field center, while the receptive field surround predominantly captures luminance contrast. Furthermore, we found that color-opponency is especially pronounced in posterior V1 that encodes the sky, matching the statistics of mouse natural scenes. Using unsupervised clustering, we demonstrate that the asymmetry in color representations across cortex can be explained by an uneven distribution of green-On/UV-Off color-opponent response types that are represented in the upper visual field. This type of color-opponency in the receptive field center was not present at the level of the retinal output and, therefore, is likely computed in the cortex by integrating upstream visual signals. Finally, a simple model with natural scene-inspired parametric stimuli shows that green-On/UV-Off color-opponent response types may enhance the detection of “predatory”-like dark UV-objects in noisy daylight scenes. The results from this study highlight the relevance of color processing in the mouse visual system and contribute to our understanding of how color information is organized in the visual hierarchy across species. More broadly, they support the hypothesis that visual cortex combines upstream information towards computing neuronal selectivity to behaviorally-relevant sensory features. |
format | Online Article Text |
id | pubmed-10274736 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-102747362023-06-17 Asymmetric distribution of color-opponent response types across mouse visual cortex supports superior color vision in the sky Franke, Katrin Cai, Chenchen Ponder, Kayla Fu, Jiakun Sokoloski, Sacha Berens, Philipp Tolias, Andreas S. bioRxiv Article Color is an important visual feature that informs behavior, and the retinal basis for color vision has been studied across various vertebrate species. While we know how color information is processed in visual brain areas of primates, we have limited understanding of how it is organized beyond the retina in other species, including most dichromatic mammals. In this study, we systematically characterized how color is represented in the primary visual cortex (V1) of mice. Using large-scale neuronal recordings and a luminance and color noise stimulus, we found that more than a third of neurons in mouse V1 are color-opponent in their receptive field center, while the receptive field surround predominantly captures luminance contrast. Furthermore, we found that color-opponency is especially pronounced in posterior V1 that encodes the sky, matching the statistics of mouse natural scenes. Using unsupervised clustering, we demonstrate that the asymmetry in color representations across cortex can be explained by an uneven distribution of green-On/UV-Off color-opponent response types that are represented in the upper visual field. This type of color-opponency in the receptive field center was not present at the level of the retinal output and, therefore, is likely computed in the cortex by integrating upstream visual signals. Finally, a simple model with natural scene-inspired parametric stimuli shows that green-On/UV-Off color-opponent response types may enhance the detection of “predatory”-like dark UV-objects in noisy daylight scenes. The results from this study highlight the relevance of color processing in the mouse visual system and contribute to our understanding of how color information is organized in the visual hierarchy across species. More broadly, they support the hypothesis that visual cortex combines upstream information towards computing neuronal selectivity to behaviorally-relevant sensory features. Cold Spring Harbor Laboratory 2023-06-05 /pmc/articles/PMC10274736/ /pubmed/37333280 http://dx.doi.org/10.1101/2023.06.01.543054 Text en https://creativecommons.org/licenses/by-nc/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Article Franke, Katrin Cai, Chenchen Ponder, Kayla Fu, Jiakun Sokoloski, Sacha Berens, Philipp Tolias, Andreas S. Asymmetric distribution of color-opponent response types across mouse visual cortex supports superior color vision in the sky |
title | Asymmetric distribution of color-opponent response types across mouse visual cortex supports superior color vision in the sky |
title_full | Asymmetric distribution of color-opponent response types across mouse visual cortex supports superior color vision in the sky |
title_fullStr | Asymmetric distribution of color-opponent response types across mouse visual cortex supports superior color vision in the sky |
title_full_unstemmed | Asymmetric distribution of color-opponent response types across mouse visual cortex supports superior color vision in the sky |
title_short | Asymmetric distribution of color-opponent response types across mouse visual cortex supports superior color vision in the sky |
title_sort | asymmetric distribution of color-opponent response types across mouse visual cortex supports superior color vision in the sky |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10274736/ https://www.ncbi.nlm.nih.gov/pubmed/37333280 http://dx.doi.org/10.1101/2023.06.01.543054 |
work_keys_str_mv | AT frankekatrin asymmetricdistributionofcoloropponentresponsetypesacrossmousevisualcortexsupportssuperiorcolorvisioninthesky AT caichenchen asymmetricdistributionofcoloropponentresponsetypesacrossmousevisualcortexsupportssuperiorcolorvisioninthesky AT ponderkayla asymmetricdistributionofcoloropponentresponsetypesacrossmousevisualcortexsupportssuperiorcolorvisioninthesky AT fujiakun asymmetricdistributionofcoloropponentresponsetypesacrossmousevisualcortexsupportssuperiorcolorvisioninthesky AT sokoloskisacha asymmetricdistributionofcoloropponentresponsetypesacrossmousevisualcortexsupportssuperiorcolorvisioninthesky AT berensphilipp asymmetricdistributionofcoloropponentresponsetypesacrossmousevisualcortexsupportssuperiorcolorvisioninthesky AT toliasandreass asymmetricdistributionofcoloropponentresponsetypesacrossmousevisualcortexsupportssuperiorcolorvisioninthesky |