Cargando…

Impaired cerebellar plasticity hypersensitizes sensory reflexes in SCN2A-associated ASD

Children diagnosed with autism spectrum disorder (ASD) commonly present with sensory hypersensitivity, or abnormally strong reactions to sensory stimuli. Such hypersensitivity can be overwhelming, causing high levels of distress that contribute markedly to the negative aspects of the disorder. Here,...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Chenyu, Derderian, Kimberly D., Hamada, Elizabeth, Zhou, Xujia, Nelson, Andrew D., Kyoung, Henry, Ahituv, Nadav, Bouvier, Guy, Bender, Kevin J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10274749/
https://www.ncbi.nlm.nih.gov/pubmed/37333267
http://dx.doi.org/10.1101/2023.06.05.543814
Descripción
Sumario:Children diagnosed with autism spectrum disorder (ASD) commonly present with sensory hypersensitivity, or abnormally strong reactions to sensory stimuli. Such hypersensitivity can be overwhelming, causing high levels of distress that contribute markedly to the negative aspects of the disorder. Here, we identify the mechanisms that underlie hypersensitivity in a sensorimotor reflex found to be altered in humans and in mice with loss-of-function in the ASD risk-factor gene SCN2A. The cerebellum-dependent vestibulo-ocular reflex (VOR), which helps maintain one’s gaze during movement, was hypersensitized due to deficits in cerebellar synaptic plasticity. Heterozygous loss of SCN2A-encoded Na(V)1.2 sodium channels in granule cells impaired high-frequency transmission to Purkinje cells and long-term potentiation, a form of synaptic plasticity important for modulating VOR gain. VOR plasticity could be rescued in adolescent mice via a CRISPR-activator approach that increases Scn2a expression, highlighting how evaluation of simple reflexes can be used as quantitative readout of therapeutic interventions.