Cargando…

TDP-43-stratified single-cell proteomic profiling of postmortem human spinal motor neurons reveals protein dynamics in amyotrophic lateral sclerosis

Unbiased proteomics has been employed to interrogate central nervous system (CNS) tissues (brain, spinal cord) and fluid matrices (CSF, plasma) from amyotrophic lateral sclerosis (ALS) patients; yet, a limitation of conventional bulk tissue studies is that motor neuron (MN) proteome signals may be c...

Descripción completa

Detalles Bibliográficos
Autores principales: Guise, Amanda J., Misal, Santosh A., Carson, Richard, Boekweg, Hannah, Watt, Daisha Van Der, Truong, Thy, Liang, Yiran, Chu, Jen-Hwa, Welsh, Nora C., Gagnon, Jake, Payne, Samuel H., Plowey, Edward D., Kelly, Ryan T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10274884/
https://www.ncbi.nlm.nih.gov/pubmed/37333094
http://dx.doi.org/10.1101/2023.06.08.544233
_version_ 1785059805567647744
author Guise, Amanda J.
Misal, Santosh A.
Carson, Richard
Boekweg, Hannah
Watt, Daisha Van Der
Truong, Thy
Liang, Yiran
Chu, Jen-Hwa
Welsh, Nora C.
Gagnon, Jake
Payne, Samuel H.
Plowey, Edward D.
Kelly, Ryan T.
author_facet Guise, Amanda J.
Misal, Santosh A.
Carson, Richard
Boekweg, Hannah
Watt, Daisha Van Der
Truong, Thy
Liang, Yiran
Chu, Jen-Hwa
Welsh, Nora C.
Gagnon, Jake
Payne, Samuel H.
Plowey, Edward D.
Kelly, Ryan T.
author_sort Guise, Amanda J.
collection PubMed
description Unbiased proteomics has been employed to interrogate central nervous system (CNS) tissues (brain, spinal cord) and fluid matrices (CSF, plasma) from amyotrophic lateral sclerosis (ALS) patients; yet, a limitation of conventional bulk tissue studies is that motor neuron (MN) proteome signals may be confounded by admixed non-MN proteins. Recent advances in trace sample proteomics have enabled quantitative protein abundance datasets from single human MNs (Cong et al., 2020b). In this study, we leveraged laser capture microdissection (LCM) and nanoPOTS (Zhu et al., 2018c) single-cell mass spectrometry (MS)-based proteomics to query changes in protein expression in single MNs from postmortem ALS and control donor spinal cord tissues, leading to the identification of 2515 proteins across MNs samples (>900 per single MN) and quantitative comparison of 1870 proteins between disease groups. Furthermore, we studied the impact of enriching/stratifying MN proteome samples based on the presence and extent of immunoreactive, cytoplasmic TDP-43 inclusions, allowing identification of 3368 proteins across MNs samples and profiling of 2238 proteins across TDP-43 strata. We found extensive overlap in differential protein abundance profiles between MNs with or without obvious TDP-43 cytoplasmic inclusions that together point to early and sustained dysregulation of oxidative phosphorylation, mRNA splicing and translation, and retromer-mediated vesicular transport in ALS. Our data are the first unbiased quantification of single MN protein abundance changes associated with TDP-43 proteinopathy and begin to demonstrate the utility of pathology-stratified trace sample proteomics for understanding single-cell protein abundance changes in human neurologic diseases.
format Online
Article
Text
id pubmed-10274884
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-102748842023-06-17 TDP-43-stratified single-cell proteomic profiling of postmortem human spinal motor neurons reveals protein dynamics in amyotrophic lateral sclerosis Guise, Amanda J. Misal, Santosh A. Carson, Richard Boekweg, Hannah Watt, Daisha Van Der Truong, Thy Liang, Yiran Chu, Jen-Hwa Welsh, Nora C. Gagnon, Jake Payne, Samuel H. Plowey, Edward D. Kelly, Ryan T. bioRxiv Article Unbiased proteomics has been employed to interrogate central nervous system (CNS) tissues (brain, spinal cord) and fluid matrices (CSF, plasma) from amyotrophic lateral sclerosis (ALS) patients; yet, a limitation of conventional bulk tissue studies is that motor neuron (MN) proteome signals may be confounded by admixed non-MN proteins. Recent advances in trace sample proteomics have enabled quantitative protein abundance datasets from single human MNs (Cong et al., 2020b). In this study, we leveraged laser capture microdissection (LCM) and nanoPOTS (Zhu et al., 2018c) single-cell mass spectrometry (MS)-based proteomics to query changes in protein expression in single MNs from postmortem ALS and control donor spinal cord tissues, leading to the identification of 2515 proteins across MNs samples (>900 per single MN) and quantitative comparison of 1870 proteins between disease groups. Furthermore, we studied the impact of enriching/stratifying MN proteome samples based on the presence and extent of immunoreactive, cytoplasmic TDP-43 inclusions, allowing identification of 3368 proteins across MNs samples and profiling of 2238 proteins across TDP-43 strata. We found extensive overlap in differential protein abundance profiles between MNs with or without obvious TDP-43 cytoplasmic inclusions that together point to early and sustained dysregulation of oxidative phosphorylation, mRNA splicing and translation, and retromer-mediated vesicular transport in ALS. Our data are the first unbiased quantification of single MN protein abundance changes associated with TDP-43 proteinopathy and begin to demonstrate the utility of pathology-stratified trace sample proteomics for understanding single-cell protein abundance changes in human neurologic diseases. Cold Spring Harbor Laboratory 2023-06-10 /pmc/articles/PMC10274884/ /pubmed/37333094 http://dx.doi.org/10.1101/2023.06.08.544233 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Guise, Amanda J.
Misal, Santosh A.
Carson, Richard
Boekweg, Hannah
Watt, Daisha Van Der
Truong, Thy
Liang, Yiran
Chu, Jen-Hwa
Welsh, Nora C.
Gagnon, Jake
Payne, Samuel H.
Plowey, Edward D.
Kelly, Ryan T.
TDP-43-stratified single-cell proteomic profiling of postmortem human spinal motor neurons reveals protein dynamics in amyotrophic lateral sclerosis
title TDP-43-stratified single-cell proteomic profiling of postmortem human spinal motor neurons reveals protein dynamics in amyotrophic lateral sclerosis
title_full TDP-43-stratified single-cell proteomic profiling of postmortem human spinal motor neurons reveals protein dynamics in amyotrophic lateral sclerosis
title_fullStr TDP-43-stratified single-cell proteomic profiling of postmortem human spinal motor neurons reveals protein dynamics in amyotrophic lateral sclerosis
title_full_unstemmed TDP-43-stratified single-cell proteomic profiling of postmortem human spinal motor neurons reveals protein dynamics in amyotrophic lateral sclerosis
title_short TDP-43-stratified single-cell proteomic profiling of postmortem human spinal motor neurons reveals protein dynamics in amyotrophic lateral sclerosis
title_sort tdp-43-stratified single-cell proteomic profiling of postmortem human spinal motor neurons reveals protein dynamics in amyotrophic lateral sclerosis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10274884/
https://www.ncbi.nlm.nih.gov/pubmed/37333094
http://dx.doi.org/10.1101/2023.06.08.544233
work_keys_str_mv AT guiseamandaj tdp43stratifiedsinglecellproteomicprofilingofpostmortemhumanspinalmotorneuronsrevealsproteindynamicsinamyotrophiclateralsclerosis
AT misalsantosha tdp43stratifiedsinglecellproteomicprofilingofpostmortemhumanspinalmotorneuronsrevealsproteindynamicsinamyotrophiclateralsclerosis
AT carsonrichard tdp43stratifiedsinglecellproteomicprofilingofpostmortemhumanspinalmotorneuronsrevealsproteindynamicsinamyotrophiclateralsclerosis
AT boekweghannah tdp43stratifiedsinglecellproteomicprofilingofpostmortemhumanspinalmotorneuronsrevealsproteindynamicsinamyotrophiclateralsclerosis
AT wattdaishavander tdp43stratifiedsinglecellproteomicprofilingofpostmortemhumanspinalmotorneuronsrevealsproteindynamicsinamyotrophiclateralsclerosis
AT truongthy tdp43stratifiedsinglecellproteomicprofilingofpostmortemhumanspinalmotorneuronsrevealsproteindynamicsinamyotrophiclateralsclerosis
AT liangyiran tdp43stratifiedsinglecellproteomicprofilingofpostmortemhumanspinalmotorneuronsrevealsproteindynamicsinamyotrophiclateralsclerosis
AT chujenhwa tdp43stratifiedsinglecellproteomicprofilingofpostmortemhumanspinalmotorneuronsrevealsproteindynamicsinamyotrophiclateralsclerosis
AT welshnorac tdp43stratifiedsinglecellproteomicprofilingofpostmortemhumanspinalmotorneuronsrevealsproteindynamicsinamyotrophiclateralsclerosis
AT gagnonjake tdp43stratifiedsinglecellproteomicprofilingofpostmortemhumanspinalmotorneuronsrevealsproteindynamicsinamyotrophiclateralsclerosis
AT paynesamuelh tdp43stratifiedsinglecellproteomicprofilingofpostmortemhumanspinalmotorneuronsrevealsproteindynamicsinamyotrophiclateralsclerosis
AT ploweyedwardd tdp43stratifiedsinglecellproteomicprofilingofpostmortemhumanspinalmotorneuronsrevealsproteindynamicsinamyotrophiclateralsclerosis
AT kellyryant tdp43stratifiedsinglecellproteomicprofilingofpostmortemhumanspinalmotorneuronsrevealsproteindynamicsinamyotrophiclateralsclerosis