Cargando…

The patatin-like protein PlpD forms novel structurally dynamic homodimers in the Pseudomonas aeruginosa outer membrane

Members of the Omp85 superfamily of outer membrane proteins (OMPs) found in Gram-negative bacteria, mitochondria and chloroplasts are characterized by a distinctive 16-stranded β-barrel transmembrane domain and at least one periplasmic POTRA domain. All previously studied Omp85 proteins promote crit...

Descripción completa

Detalles Bibliográficos
Autores principales: Hanson, Sarah E., Doyle, Matthew Thomas, Bernstein, Harris D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10274916/
https://www.ncbi.nlm.nih.gov/pubmed/37333265
http://dx.doi.org/10.1101/2023.04.17.537245
Descripción
Sumario:Members of the Omp85 superfamily of outer membrane proteins (OMPs) found in Gram-negative bacteria, mitochondria and chloroplasts are characterized by a distinctive 16-stranded β-barrel transmembrane domain and at least one periplasmic POTRA domain. All previously studied Omp85 proteins promote critical OMP assembly and/or protein translocation reactions. Pseudomonas aeruginosa PlpD is the prototype of an Omp85 protein family that contains an N-terminal patatin-like (PL) domain that is thought to be translocated across the OM by a C-terminal β-barrel domain. Challenging the current dogma, we found that the PlpD PL-domain resides exclusively in the periplasm and, unlike previously studied Omp85 proteins, PlpD forms a homodimer. Remarkably, the PL-domain contains a segment that exhibits unprecedented dynamicity by undergoing transient strand-swapping with the neighboring β-barrel domain. Our results show that the Omp85 superfamily is more structurally diverse than currently believed and suggest that the Omp85 scaffold was utilized during evolution to generate novel functions.