Cargando…
Predicting tuberculosis drug resistance with machine learning-assisted Raman spectroscopy
Tuberculosis (TB) is the world’s deadliest infectious disease, with 1.5 million annual deaths and half a million annual infections. Rapid TB diagnosis and antibiotic susceptibility testing (AST) are critical to improve patient treatment and to reduce the rise of new drug resistance. Here, we develop...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10274949/ https://www.ncbi.nlm.nih.gov/pubmed/37332564 |
_version_ | 1785059814809796608 |
---|---|
author | Ogunlade, Babatunde Tadesse, Loza F. Li, Hongquan Vu, Nhat Banaei, Niaz Barczak, Amy K. Saleh, Amr. A. E. Prakash, Manu Dionne, Jennifer A. |
author_facet | Ogunlade, Babatunde Tadesse, Loza F. Li, Hongquan Vu, Nhat Banaei, Niaz Barczak, Amy K. Saleh, Amr. A. E. Prakash, Manu Dionne, Jennifer A. |
author_sort | Ogunlade, Babatunde |
collection | PubMed |
description | Tuberculosis (TB) is the world’s deadliest infectious disease, with 1.5 million annual deaths and half a million annual infections. Rapid TB diagnosis and antibiotic susceptibility testing (AST) are critical to improve patient treatment and to reduce the rise of new drug resistance. Here, we develop a rapid, label-free approach to identify Mycobacterium tuberculosis (Mtb) strains and antibiotic-resistant mutants. We collect over 20,000 single-cell Raman spectra from isogenic mycobacterial strains each resistant to one of the four mainstay anti-TB drugs (isoniazid, rifampicin, moxifloxacin and amikacin) and train a machine-learning model on these spectra. On dried TB samples, we achieve > 98% classification accuracy of the antibiotic resistance profile, without the need for antibiotic co-incubation; in dried patient sputum, we achieve average classification accuracies of ~ 79%. We also develop a low-cost, portable Raman microscope suitable for field-deployment of this method in TB-endemic regions. |
format | Online Article Text |
id | pubmed-10274949 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cornell University |
record_format | MEDLINE/PubMed |
spelling | pubmed-102749492023-06-17 Predicting tuberculosis drug resistance with machine learning-assisted Raman spectroscopy Ogunlade, Babatunde Tadesse, Loza F. Li, Hongquan Vu, Nhat Banaei, Niaz Barczak, Amy K. Saleh, Amr. A. E. Prakash, Manu Dionne, Jennifer A. ArXiv Article Tuberculosis (TB) is the world’s deadliest infectious disease, with 1.5 million annual deaths and half a million annual infections. Rapid TB diagnosis and antibiotic susceptibility testing (AST) are critical to improve patient treatment and to reduce the rise of new drug resistance. Here, we develop a rapid, label-free approach to identify Mycobacterium tuberculosis (Mtb) strains and antibiotic-resistant mutants. We collect over 20,000 single-cell Raman spectra from isogenic mycobacterial strains each resistant to one of the four mainstay anti-TB drugs (isoniazid, rifampicin, moxifloxacin and amikacin) and train a machine-learning model on these spectra. On dried TB samples, we achieve > 98% classification accuracy of the antibiotic resistance profile, without the need for antibiotic co-incubation; in dried patient sputum, we achieve average classification accuracies of ~ 79%. We also develop a low-cost, portable Raman microscope suitable for field-deployment of this method in TB-endemic regions. Cornell University 2023-06-09 /pmc/articles/PMC10274949/ /pubmed/37332564 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. |
spellingShingle | Article Ogunlade, Babatunde Tadesse, Loza F. Li, Hongquan Vu, Nhat Banaei, Niaz Barczak, Amy K. Saleh, Amr. A. E. Prakash, Manu Dionne, Jennifer A. Predicting tuberculosis drug resistance with machine learning-assisted Raman spectroscopy |
title | Predicting tuberculosis drug resistance with machine learning-assisted Raman spectroscopy |
title_full | Predicting tuberculosis drug resistance with machine learning-assisted Raman spectroscopy |
title_fullStr | Predicting tuberculosis drug resistance with machine learning-assisted Raman spectroscopy |
title_full_unstemmed | Predicting tuberculosis drug resistance with machine learning-assisted Raman spectroscopy |
title_short | Predicting tuberculosis drug resistance with machine learning-assisted Raman spectroscopy |
title_sort | predicting tuberculosis drug resistance with machine learning-assisted raman spectroscopy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10274949/ https://www.ncbi.nlm.nih.gov/pubmed/37332564 |
work_keys_str_mv | AT ogunladebabatunde predictingtuberculosisdrugresistancewithmachinelearningassistedramanspectroscopy AT tadesselozaf predictingtuberculosisdrugresistancewithmachinelearningassistedramanspectroscopy AT lihongquan predictingtuberculosisdrugresistancewithmachinelearningassistedramanspectroscopy AT vunhat predictingtuberculosisdrugresistancewithmachinelearningassistedramanspectroscopy AT banaeiniaz predictingtuberculosisdrugresistancewithmachinelearningassistedramanspectroscopy AT barczakamyk predictingtuberculosisdrugresistancewithmachinelearningassistedramanspectroscopy AT salehamrae predictingtuberculosisdrugresistancewithmachinelearningassistedramanspectroscopy AT prakashmanu predictingtuberculosisdrugresistancewithmachinelearningassistedramanspectroscopy AT dionnejennifera predictingtuberculosisdrugresistancewithmachinelearningassistedramanspectroscopy |