Cargando…

Predicting tuberculosis drug resistance with machine learning-assisted Raman spectroscopy

Tuberculosis (TB) is the world’s deadliest infectious disease, with 1.5 million annual deaths and half a million annual infections. Rapid TB diagnosis and antibiotic susceptibility testing (AST) are critical to improve patient treatment and to reduce the rise of new drug resistance. Here, we develop...

Descripción completa

Detalles Bibliográficos
Autores principales: Ogunlade, Babatunde, Tadesse, Loza F., Li, Hongquan, Vu, Nhat, Banaei, Niaz, Barczak, Amy K., Saleh, Amr. A. E., Prakash, Manu, Dionne, Jennifer A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cornell University 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10274949/
https://www.ncbi.nlm.nih.gov/pubmed/37332564
_version_ 1785059814809796608
author Ogunlade, Babatunde
Tadesse, Loza F.
Li, Hongquan
Vu, Nhat
Banaei, Niaz
Barczak, Amy K.
Saleh, Amr. A. E.
Prakash, Manu
Dionne, Jennifer A.
author_facet Ogunlade, Babatunde
Tadesse, Loza F.
Li, Hongquan
Vu, Nhat
Banaei, Niaz
Barczak, Amy K.
Saleh, Amr. A. E.
Prakash, Manu
Dionne, Jennifer A.
author_sort Ogunlade, Babatunde
collection PubMed
description Tuberculosis (TB) is the world’s deadliest infectious disease, with 1.5 million annual deaths and half a million annual infections. Rapid TB diagnosis and antibiotic susceptibility testing (AST) are critical to improve patient treatment and to reduce the rise of new drug resistance. Here, we develop a rapid, label-free approach to identify Mycobacterium tuberculosis (Mtb) strains and antibiotic-resistant mutants. We collect over 20,000 single-cell Raman spectra from isogenic mycobacterial strains each resistant to one of the four mainstay anti-TB drugs (isoniazid, rifampicin, moxifloxacin and amikacin) and train a machine-learning model on these spectra. On dried TB samples, we achieve > 98% classification accuracy of the antibiotic resistance profile, without the need for antibiotic co-incubation; in dried patient sputum, we achieve average classification accuracies of ~ 79%. We also develop a low-cost, portable Raman microscope suitable for field-deployment of this method in TB-endemic regions.
format Online
Article
Text
id pubmed-10274949
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cornell University
record_format MEDLINE/PubMed
spelling pubmed-102749492023-06-17 Predicting tuberculosis drug resistance with machine learning-assisted Raman spectroscopy Ogunlade, Babatunde Tadesse, Loza F. Li, Hongquan Vu, Nhat Banaei, Niaz Barczak, Amy K. Saleh, Amr. A. E. Prakash, Manu Dionne, Jennifer A. ArXiv Article Tuberculosis (TB) is the world’s deadliest infectious disease, with 1.5 million annual deaths and half a million annual infections. Rapid TB diagnosis and antibiotic susceptibility testing (AST) are critical to improve patient treatment and to reduce the rise of new drug resistance. Here, we develop a rapid, label-free approach to identify Mycobacterium tuberculosis (Mtb) strains and antibiotic-resistant mutants. We collect over 20,000 single-cell Raman spectra from isogenic mycobacterial strains each resistant to one of the four mainstay anti-TB drugs (isoniazid, rifampicin, moxifloxacin and amikacin) and train a machine-learning model on these spectra. On dried TB samples, we achieve > 98% classification accuracy of the antibiotic resistance profile, without the need for antibiotic co-incubation; in dried patient sputum, we achieve average classification accuracies of ~ 79%. We also develop a low-cost, portable Raman microscope suitable for field-deployment of this method in TB-endemic regions. Cornell University 2023-06-09 /pmc/articles/PMC10274949/ /pubmed/37332564 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
spellingShingle Article
Ogunlade, Babatunde
Tadesse, Loza F.
Li, Hongquan
Vu, Nhat
Banaei, Niaz
Barczak, Amy K.
Saleh, Amr. A. E.
Prakash, Manu
Dionne, Jennifer A.
Predicting tuberculosis drug resistance with machine learning-assisted Raman spectroscopy
title Predicting tuberculosis drug resistance with machine learning-assisted Raman spectroscopy
title_full Predicting tuberculosis drug resistance with machine learning-assisted Raman spectroscopy
title_fullStr Predicting tuberculosis drug resistance with machine learning-assisted Raman spectroscopy
title_full_unstemmed Predicting tuberculosis drug resistance with machine learning-assisted Raman spectroscopy
title_short Predicting tuberculosis drug resistance with machine learning-assisted Raman spectroscopy
title_sort predicting tuberculosis drug resistance with machine learning-assisted raman spectroscopy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10274949/
https://www.ncbi.nlm.nih.gov/pubmed/37332564
work_keys_str_mv AT ogunladebabatunde predictingtuberculosisdrugresistancewithmachinelearningassistedramanspectroscopy
AT tadesselozaf predictingtuberculosisdrugresistancewithmachinelearningassistedramanspectroscopy
AT lihongquan predictingtuberculosisdrugresistancewithmachinelearningassistedramanspectroscopy
AT vunhat predictingtuberculosisdrugresistancewithmachinelearningassistedramanspectroscopy
AT banaeiniaz predictingtuberculosisdrugresistancewithmachinelearningassistedramanspectroscopy
AT barczakamyk predictingtuberculosisdrugresistancewithmachinelearningassistedramanspectroscopy
AT salehamrae predictingtuberculosisdrugresistancewithmachinelearningassistedramanspectroscopy
AT prakashmanu predictingtuberculosisdrugresistancewithmachinelearningassistedramanspectroscopy
AT dionnejennifera predictingtuberculosisdrugresistancewithmachinelearningassistedramanspectroscopy