Cargando…
Predicting tuberculosis drug resistance with machine learning-assisted Raman spectroscopy
Tuberculosis (TB) is the world’s deadliest infectious disease, with 1.5 million annual deaths and half a million annual infections. Rapid TB diagnosis and antibiotic susceptibility testing (AST) are critical to improve patient treatment and to reduce the rise of new drug resistance. Here, we develop...
Autores principales: | Ogunlade, Babatunde, Tadesse, Loza F., Li, Hongquan, Vu, Nhat, Banaei, Niaz, Barczak, Amy K., Saleh, Amr. A. E., Prakash, Manu, Dionne, Jennifer A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10274949/ https://www.ncbi.nlm.nih.gov/pubmed/37332564 |
Ejemplares similares
-
Combining Acoustic
Bioprinting with AI-Assisted Raman
Spectroscopy for High-Throughput Identification of Bacteria in Blood
por: Safir, Fareeha, et al.
Publicado: (2023) -
Plasmonic and Electrostatic Interactions Enable Uniformly
Enhanced Liquid Bacterial Surface-Enhanced Raman Scattering (SERS)
por: Tadesse, Loza F., et al.
Publicado: (2020) -
Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning
por: Ho, Chi-Sing, et al.
Publicado: (2019) -
Dataset of serum proteomic spectra from tuberculosis patients detected by Raman spectroscopy and surface-enhanced Raman spectroscopy
por: Kaewseekhao, Benjawan, et al.
Publicado: (2019) -
Raman spectroscopy and topological machine learning for cancer grading
por: Conti, Francesco, et al.
Publicado: (2023)