Cargando…
Explainable drug side effect prediction via biologically informed graph neural network
Early detection of potential side effects (SE) is a critical and challenging task for drug discovery and patient care. In-vitro or in-vivo approach to detect potential SEs is not scalable for many drug candidates during the preclinical stage. Recent advances in explainable machine learning may facil...
Autores principales: | Huang, Tongtong, Lin, Ko-Hong, Machado-Vieira, Rodrigo, Soares, Jair C, Jiang, Xiaoqian, Kim, Yejin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10275013/ https://www.ncbi.nlm.nih.gov/pubmed/37333107 http://dx.doi.org/10.1101/2023.05.26.23290615 |
Ejemplares similares
-
Drug repurposing for COVID-19 using graph neural network and harmonizing multiple evidence
por: Hsieh, Kanglin, et al.
Publicado: (2021) -
Evaluating explainability for graph neural networks
por: Agarwal, Chirag, et al.
Publicado: (2023) -
Drug Repurposing for COVID-19 using Graph Neural Network with Genetic, Mechanistic, and Epidemiological Validation
por: Hsieh, Kanglin, et al.
Publicado: (2020) -
XGDAG: explainable gene–disease associations via graph neural networks
por: Mastropietro, Andrea, et al.
Publicado: (2023) -
Explainable graph neural networks for organic cages
por: Yuan, Qi, et al.
Publicado: (2022)