Cargando…
Intrusion Detection System for IoT Based on Deep Learning and Modified Reptile Search Algorithm
This study proposes a novel framework to improve intrusion detection system (IDS) performance based on the data collected from the Internet of things (IoT) environments. The developed framework relies on deep learning and metaheuristic (MH) optimization algorithms to perform feature extraction and s...
Autores principales: | Dahou, Abdelghani, Abd Elaziz, Mohamed, Chelloug, Samia Allaoua, Awadallah, Mohammed A., Al-Betar, Mohammed Azmi, Al-qaness, Mohammed A. A., Forestiero, Agostino |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10275688/ https://www.ncbi.nlm.nih.gov/pubmed/37332528 http://dx.doi.org/10.1155/2022/6473507 |
Ejemplares similares
-
Advanced Feature Extraction and Selection Approach Using Deep Learning and Aquila Optimizer for IoT Intrusion Detection System
por: Fatani, Abdulaziz, et al.
Publicado: (2021) -
Enhancing Intrusion Detection Systems for IoT and Cloud Environments Using a Growth Optimizer Algorithm and Conventional Neural Networks
por: Fatani, Abdulaziz, et al.
Publicado: (2023) -
Medical Image Classification Utilizing Ensemble Learning and Levy Flight-Based Honey Badger Algorithm on 6G-Enabled Internet of Things
por: Abd Elaziz, Mohamed, et al.
Publicado: (2022) -
Adaptive Machine Learning Based Distributed Denial-of-Services Attacks Detection and Mitigation System for SDN-Enabled IoT †
por: Aslam, Muhammad, et al.
Publicado: (2022) -
Recent advances in NLP
por: Abd Elaziz, Mohamed, et al.
Publicado: (2019)