Cargando…

Neural regeneration ability of Polypyrrole-Collagen-Quercetin composite in the spinal cord injury

Spinal cord injury (SCI) is a major clinical problem in young patients. The major hurdle in SCI regeneration is the replacement of lost nerve communication signals due to injury. Here we have prepared a biocompatible electrical conductive composite such as Collagen-Polypyrrole combined with Querceti...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Song, Li, Qifeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Japanese Society for Regenerative Medicine 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10275702/
https://www.ncbi.nlm.nih.gov/pubmed/37334243
http://dx.doi.org/10.1016/j.reth.2023.05.010
Descripción
Sumario:Spinal cord injury (SCI) is a major clinical problem in young patients. The major hurdle in SCI regeneration is the replacement of lost nerve communication signals due to injury. Here we have prepared a biocompatible electrical conductive composite such as Collagen-Polypyrrole combined with Quercetin (Col-PPy-Qur) composite. The prepared composites are characterized for their chemical functionality and morphology by the FTIR and SEM & TEM analysis, respectively. The Col-PPy-Qur composite observed electrical conductivity at 0.0653 s/cm due to the conductive Polypyrrole polymer present in the composite. The Col-PPy-Qur composite exhibits a mechanical strength of 0.1281 mPa, similar to the native human spinal cord's mechanical strength. In order to explore the regeneration potential, the viability of the composite has been tested with human astrocyte cells (HACs). The Tuj1 and GFAF marker expression was quantized by RT-PCR analysis. Increased Tuj1 and decreased GFAF expression by the Col-PPy-Qur composite indicated the potential differentiation ability of the HACs into neuron cells. The results indicated that the Col-PPy-Qur composite could have good regeneration and differentiation ability, better biocompatibility, and suitable mechanical and conductivity properties. It can act as an excellent strategy for spinal cord regeneration in the nearer future.