Cargando…
Performance assessment of a triple-junction solar cell with 1.0 eV GaAsBi absorber
Group III–V semiconductor multi-junction solar cells are widely used in concentrated-sun and space photovoltaic applications due to their unsurpassed power conversion efficiency and radiation hardness. To further increase the efficiency, new device architectures rely on better bandgap combinations o...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10275816/ https://www.ncbi.nlm.nih.gov/pubmed/37382743 http://dx.doi.org/10.1186/s11671-023-03865-x |
_version_ | 1785059949559152640 |
---|---|
author | Paulauskas, Tadas Pačebutas, Vaidas Strazdienė, Viktorija Geižutis, Andrejus Devenson, Jan Kamarauskas, Mindaugas Skapas, Martynas Kondrotas, Rokas Drazdys, Mantas Rudzikas, Matas Šebeka, Benjaminas Vretenár, Viliam Krotkus, Arūnas |
author_facet | Paulauskas, Tadas Pačebutas, Vaidas Strazdienė, Viktorija Geižutis, Andrejus Devenson, Jan Kamarauskas, Mindaugas Skapas, Martynas Kondrotas, Rokas Drazdys, Mantas Rudzikas, Matas Šebeka, Benjaminas Vretenár, Viliam Krotkus, Arūnas |
author_sort | Paulauskas, Tadas |
collection | PubMed |
description | Group III–V semiconductor multi-junction solar cells are widely used in concentrated-sun and space photovoltaic applications due to their unsurpassed power conversion efficiency and radiation hardness. To further increase the efficiency, new device architectures rely on better bandgap combinations over the mature GaInP/InGaAs/Ge technology, with Ge preferably replaced by a 1.0 eV subcell. Herein, we present a thin-film triple-junction solar cell AlGaAs/GaAs/GaAsBi with 1.0 eV dilute bismide. A compositionally step-graded InGaAs buffer layer is used to integrate high crystalline quality GaAsBi absorber. The solar cells, grown by molecular-beam epitaxy, achieve 19.1% efficiency at AM1.5G spectrum, 2.51 V open-circuit voltage, and 9.86 mA/cm(2) short-circuit current density. Device analysis identifies several routes to significantly improve the performance of the GaAsBi subcell and of the overall solar cell. This study is the first to report on multi-junctions incorporating GaAsBi and is an addition to the research on the use of bismuth-containing III–V alloys in photonic device applications. |
format | Online Article Text |
id | pubmed-10275816 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-102758162023-06-18 Performance assessment of a triple-junction solar cell with 1.0 eV GaAsBi absorber Paulauskas, Tadas Pačebutas, Vaidas Strazdienė, Viktorija Geižutis, Andrejus Devenson, Jan Kamarauskas, Mindaugas Skapas, Martynas Kondrotas, Rokas Drazdys, Mantas Rudzikas, Matas Šebeka, Benjaminas Vretenár, Viliam Krotkus, Arūnas Discov Nano Research Group III–V semiconductor multi-junction solar cells are widely used in concentrated-sun and space photovoltaic applications due to their unsurpassed power conversion efficiency and radiation hardness. To further increase the efficiency, new device architectures rely on better bandgap combinations over the mature GaInP/InGaAs/Ge technology, with Ge preferably replaced by a 1.0 eV subcell. Herein, we present a thin-film triple-junction solar cell AlGaAs/GaAs/GaAsBi with 1.0 eV dilute bismide. A compositionally step-graded InGaAs buffer layer is used to integrate high crystalline quality GaAsBi absorber. The solar cells, grown by molecular-beam epitaxy, achieve 19.1% efficiency at AM1.5G spectrum, 2.51 V open-circuit voltage, and 9.86 mA/cm(2) short-circuit current density. Device analysis identifies several routes to significantly improve the performance of the GaAsBi subcell and of the overall solar cell. This study is the first to report on multi-junctions incorporating GaAsBi and is an addition to the research on the use of bismuth-containing III–V alloys in photonic device applications. Springer US 2023-06-16 /pmc/articles/PMC10275816/ /pubmed/37382743 http://dx.doi.org/10.1186/s11671-023-03865-x Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Paulauskas, Tadas Pačebutas, Vaidas Strazdienė, Viktorija Geižutis, Andrejus Devenson, Jan Kamarauskas, Mindaugas Skapas, Martynas Kondrotas, Rokas Drazdys, Mantas Rudzikas, Matas Šebeka, Benjaminas Vretenár, Viliam Krotkus, Arūnas Performance assessment of a triple-junction solar cell with 1.0 eV GaAsBi absorber |
title | Performance assessment of a triple-junction solar cell with 1.0 eV GaAsBi absorber |
title_full | Performance assessment of a triple-junction solar cell with 1.0 eV GaAsBi absorber |
title_fullStr | Performance assessment of a triple-junction solar cell with 1.0 eV GaAsBi absorber |
title_full_unstemmed | Performance assessment of a triple-junction solar cell with 1.0 eV GaAsBi absorber |
title_short | Performance assessment of a triple-junction solar cell with 1.0 eV GaAsBi absorber |
title_sort | performance assessment of a triple-junction solar cell with 1.0 ev gaasbi absorber |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10275816/ https://www.ncbi.nlm.nih.gov/pubmed/37382743 http://dx.doi.org/10.1186/s11671-023-03865-x |
work_keys_str_mv | AT paulauskastadas performanceassessmentofatriplejunctionsolarcellwith10evgaasbiabsorber AT pacebutasvaidas performanceassessmentofatriplejunctionsolarcellwith10evgaasbiabsorber AT strazdieneviktorija performanceassessmentofatriplejunctionsolarcellwith10evgaasbiabsorber AT geizutisandrejus performanceassessmentofatriplejunctionsolarcellwith10evgaasbiabsorber AT devensonjan performanceassessmentofatriplejunctionsolarcellwith10evgaasbiabsorber AT kamarauskasmindaugas performanceassessmentofatriplejunctionsolarcellwith10evgaasbiabsorber AT skapasmartynas performanceassessmentofatriplejunctionsolarcellwith10evgaasbiabsorber AT kondrotasrokas performanceassessmentofatriplejunctionsolarcellwith10evgaasbiabsorber AT drazdysmantas performanceassessmentofatriplejunctionsolarcellwith10evgaasbiabsorber AT rudzikasmatas performanceassessmentofatriplejunctionsolarcellwith10evgaasbiabsorber AT sebekabenjaminas performanceassessmentofatriplejunctionsolarcellwith10evgaasbiabsorber AT vretenarviliam performanceassessmentofatriplejunctionsolarcellwith10evgaasbiabsorber AT krotkusarunas performanceassessmentofatriplejunctionsolarcellwith10evgaasbiabsorber |