Cargando…
Similarity measures-based graph co-contrastive learning for drug–disease association prediction
MOTIVATION: An imperative step in drug discovery is the prediction of drug–disease associations (DDAs), which tries to uncover potential therapeutic possibilities for already validated drugs. It is costly and time-consuming to predict DDAs using wet experiments. Graph Neural Networks as an emerging...
Autores principales: | Gao, Zihao, Ma, Huifang, Zhang, Xiaohui, Wang, Yike, Wu, Zheyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10275904/ https://www.ncbi.nlm.nih.gov/pubmed/37261859 http://dx.doi.org/10.1093/bioinformatics/btad357 |
Ejemplares similares
-
Hierarchical graph transformer with contrastive learning for protein function prediction
por: Gu, Zhonghui, et al.
Publicado: (2023) -
CMMS-GCL: cross-modality metabolic stability prediction with graph contrastive learning
por: Du, Bing-Xue, et al.
Publicado: (2023) -
DTiGEMS+: drug–target interaction prediction using graph embedding, graph mining, and similarity-based techniques
por: Thafar, Maha A., et al.
Publicado: (2020) -
Detecting drug-drug interactions using artificial neural networks and classic graph similarity measures
por: Shtar, Guy, et al.
Publicado: (2019) -
Application of deep metric learning to molecular graph similarity
por: Coupry, Damien E., et al.
Publicado: (2022)