Cargando…
Using DUCK-Net for polyp image segmentation
This paper presents a novel supervised convolutional neural network architecture, “DUCK-Net”, capable of effectively learning and generalizing from small amounts of medical images to perform accurate segmentation tasks. Our model utilizes an encoder-decoder structure with a residual downsampling mec...
Autores principales: | Dumitru, Razvan-Gabriel, Peteleaza, Darius, Craciun, Catalin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10276013/ https://www.ncbi.nlm.nih.gov/pubmed/37328572 http://dx.doi.org/10.1038/s41598-023-36940-5 |
Ejemplares similares
-
Gastrointestinal Tract Polyp Anomaly Segmentation on Colonoscopy Images Using Graft-U-Net
por: Ramzan, Muhammad, et al.
Publicado: (2022) -
DRI-Net: segmentation of polyp in colonoscopy images using dense residual-inception network
por: Lan, Xiaoke, et al.
Publicado: (2023) -
Mobile-PolypNet: Lightweight Colon Polyp Segmentation Network for Low-Resource Settings
por: Karmakar, Ranit, et al.
Publicado: (2022) -
N-Net: Lesion region segmentations using the generalized hybrid dilated convolutions for polyps in colonoscopy images
por: Cui, Rongsheng, et al.
Publicado: (2022) -
DBE-Net: Dual Boundary-Guided Attention Exploration Network for Polyp Segmentation
por: Ma, Haichao, et al.
Publicado: (2023)