Cargando…
Deep learning for diffusion in porous media
We adopt convolutional neural networks (CNN) to predict the basic properties of the porous media. Two different media types are considered: one mimics the sand packings, and the other mimics the systems derived from the extracellular space of biological tissues. The Lattice Boltzmann Method is used...
Autores principales: | Graczyk, Krzysztof M., Strzelczyk, Dawid, Matyka, Maciej |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10276037/ https://www.ncbi.nlm.nih.gov/pubmed/37328555 http://dx.doi.org/10.1038/s41598-023-36466-w |
Ejemplares similares
-
Predicting porosity, permeability, and tortuosity of porous media from images by deep learning
por: Graczyk, Krzysztof M., et al.
Publicado: (2020) -
Predicting Effective Diffusivity of Porous Media from Images by Deep Learning
por: Wu, Haiyi, et al.
Publicado: (2019) -
Pushing Droplet Through a Porous Medium
por: Matyka, Maciej
Publicado: (2021) -
Imaging through diffuse media using multi-mode vortex beams and deep learning
por: Balasubramaniam, Ganesh M., et al.
Publicado: (2022) -
Fractured porous media
por: Adler, Pierre M, et al.
Publicado: (2013)