Cargando…
Detecting common coccinellids found in sorghum using deep learning models
Increased global production of sorghum has the potential to meet many of the demands of a growing human population. Developing automation technologies for field scouting is crucial for long-term and low-cost production. Since 2013, sugarcane aphid (SCA) Melanaphis sacchari (Zehntner) has become an i...
Autores principales: | Wang, Chaoxin, Grijalva, Ivan, Caragea, Doina, McCornack, Brian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10276038/ https://www.ncbi.nlm.nih.gov/pubmed/37328502 http://dx.doi.org/10.1038/s41598-023-36738-5 |
Ejemplares similares
-
Aphid cluster recognition and detection in the wild using deep learning models
por: Zhang, Tianxiao, et al.
Publicado: (2023) -
Sorghum Seed Maturity Affects the Weight and Feeding Duration of Immature Corn Earworm, Helicoverpa zea, and Fall Armyworm, Spodoptera frugiperda, in the Laboratory
por: Soper, Alysha M., et al.
Publicado: (2013) -
Remote Sensing Data to Detect Hessian Fly Infestation in Commercial Wheat Fields
por: Bhattarai, Ganesh P., et al.
Publicado: (2019) -
Assessing the potential for deep learning and computer vision to identify bumble bee species from images
por: Spiesman, Brian J., et al.
Publicado: (2021) -
Deep learning based high-throughput phenotyping of chalkiness in rice exposed to high night temperature
por: Wang, Chaoxin, et al.
Publicado: (2022)