Cargando…
Understanding the impact of bioactive coating materials for human mesenchymal stromal cells and implications for manufacturing
Bioactive materials interact with cells and modulate their characteristics which enable the generation of cell-based products with desired specifications. However, their evaluation and impact are often overlooked when establishing a cell therapy manufacturing process. In this study, we investigated...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10276101/ https://www.ncbi.nlm.nih.gov/pubmed/37227598 http://dx.doi.org/10.1007/s10529-023-03369-9 |
_version_ | 1785060005619171328 |
---|---|
author | Silva Couto, Pedro Molina, Samuel A. O’Sullivan, Denis O’Neill, Liam Lyness, Alexander M. Rafiq, Qasim A. |
author_facet | Silva Couto, Pedro Molina, Samuel A. O’Sullivan, Denis O’Neill, Liam Lyness, Alexander M. Rafiq, Qasim A. |
author_sort | Silva Couto, Pedro |
collection | PubMed |
description | Bioactive materials interact with cells and modulate their characteristics which enable the generation of cell-based products with desired specifications. However, their evaluation and impact are often overlooked when establishing a cell therapy manufacturing process. In this study, we investigated the role of different surfaces for tissue culture including, untreated polystyrene surface, uncoated Cyclic Olefin Polymer (COP) and COP coated with collagen and recombinant fibronectin. It was observed that human mesenchymal stromal cells (hMSCs) expanded on COP-coated plates with different bioactive materials resulted in improved cell growth kinetics compared to traditional polystyrene plates and non-coated COP plates. The doubling time obtained was 2.78 and 3.02 days for hMSC seeded in COP plates coated with collagen type I and recombinant fibronectin respectively, and 4.64 days for cells plated in standard polystyrene treated plates. Metabolite analysis reinforced the findings of the growth kinetic studies, specifically that cells cultured on COP plates coated with collagen I and fibronectin exhibited improved growth as evidenced by a higher lactate production rate (9.38 × 10(5) and 9.67 × 10(5) pmol/cell/day, respectively) compared to cells from the polystyrene group (5.86 × 10(5) pmol/cell/day). This study demonstrated that COP is an effective alternative to polystyrene-treated plates when coated with bioactive materials such as collagen and fibronectin, however COP-treated plates without additional coatings were found not to be sufficient to support cell growth. These findings demonstrate the key role biomaterials play in the cell manufacturing process and the importance of optimising this selection. |
format | Online Article Text |
id | pubmed-10276101 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Springer Netherlands |
record_format | MEDLINE/PubMed |
spelling | pubmed-102761012023-06-18 Understanding the impact of bioactive coating materials for human mesenchymal stromal cells and implications for manufacturing Silva Couto, Pedro Molina, Samuel A. O’Sullivan, Denis O’Neill, Liam Lyness, Alexander M. Rafiq, Qasim A. Biotechnol Lett Original Research Paper Bioactive materials interact with cells and modulate their characteristics which enable the generation of cell-based products with desired specifications. However, their evaluation and impact are often overlooked when establishing a cell therapy manufacturing process. In this study, we investigated the role of different surfaces for tissue culture including, untreated polystyrene surface, uncoated Cyclic Olefin Polymer (COP) and COP coated with collagen and recombinant fibronectin. It was observed that human mesenchymal stromal cells (hMSCs) expanded on COP-coated plates with different bioactive materials resulted in improved cell growth kinetics compared to traditional polystyrene plates and non-coated COP plates. The doubling time obtained was 2.78 and 3.02 days for hMSC seeded in COP plates coated with collagen type I and recombinant fibronectin respectively, and 4.64 days for cells plated in standard polystyrene treated plates. Metabolite analysis reinforced the findings of the growth kinetic studies, specifically that cells cultured on COP plates coated with collagen I and fibronectin exhibited improved growth as evidenced by a higher lactate production rate (9.38 × 10(5) and 9.67 × 10(5) pmol/cell/day, respectively) compared to cells from the polystyrene group (5.86 × 10(5) pmol/cell/day). This study demonstrated that COP is an effective alternative to polystyrene-treated plates when coated with bioactive materials such as collagen and fibronectin, however COP-treated plates without additional coatings were found not to be sufficient to support cell growth. These findings demonstrate the key role biomaterials play in the cell manufacturing process and the importance of optimising this selection. Springer Netherlands 2023-05-25 2023 /pmc/articles/PMC10276101/ /pubmed/37227598 http://dx.doi.org/10.1007/s10529-023-03369-9 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Original Research Paper Silva Couto, Pedro Molina, Samuel A. O’Sullivan, Denis O’Neill, Liam Lyness, Alexander M. Rafiq, Qasim A. Understanding the impact of bioactive coating materials for human mesenchymal stromal cells and implications for manufacturing |
title | Understanding the impact of bioactive coating materials for human mesenchymal stromal cells and implications for manufacturing |
title_full | Understanding the impact of bioactive coating materials for human mesenchymal stromal cells and implications for manufacturing |
title_fullStr | Understanding the impact of bioactive coating materials for human mesenchymal stromal cells and implications for manufacturing |
title_full_unstemmed | Understanding the impact of bioactive coating materials for human mesenchymal stromal cells and implications for manufacturing |
title_short | Understanding the impact of bioactive coating materials for human mesenchymal stromal cells and implications for manufacturing |
title_sort | understanding the impact of bioactive coating materials for human mesenchymal stromal cells and implications for manufacturing |
topic | Original Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10276101/ https://www.ncbi.nlm.nih.gov/pubmed/37227598 http://dx.doi.org/10.1007/s10529-023-03369-9 |
work_keys_str_mv | AT silvacoutopedro understandingtheimpactofbioactivecoatingmaterialsforhumanmesenchymalstromalcellsandimplicationsformanufacturing AT molinasamuela understandingtheimpactofbioactivecoatingmaterialsforhumanmesenchymalstromalcellsandimplicationsformanufacturing AT osullivandenis understandingtheimpactofbioactivecoatingmaterialsforhumanmesenchymalstromalcellsandimplicationsformanufacturing AT oneillliam understandingtheimpactofbioactivecoatingmaterialsforhumanmesenchymalstromalcellsandimplicationsformanufacturing AT lynessalexanderm understandingtheimpactofbioactivecoatingmaterialsforhumanmesenchymalstromalcellsandimplicationsformanufacturing AT rafiqqasima understandingtheimpactofbioactivecoatingmaterialsforhumanmesenchymalstromalcellsandimplicationsformanufacturing |