Cargando…
Chaperonin CCT controls extracellular vesicle production and cell metabolism through kinesin dynamics
Cell proteostasis includes gene transcription, protein translation, folding of de novo proteins, post‐translational modifications, secretion, degradation and recycling. By profiling the proteome of extracellular vesicles (EVs) from T cells, we have found the chaperonin complex CCT, involved in the c...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10276179/ https://www.ncbi.nlm.nih.gov/pubmed/37328936 http://dx.doi.org/10.1002/jev2.12333 |
_version_ | 1785060021551235072 |
---|---|
author | Rojas‐Gómez, Amelia Dosil, Sara G. Chichón, Francisco J. Fernández‐Gallego, Nieves Ferrarini, Alessia Calvo, Enrique Calzada‐Fraile, Diego Requena, Silvia Otón, Joaquin Serrano, Alvaro Tarifa, Rocio Arroyo, Montserrat Sorrentino, Andrea Pereiro, Eva Vázquez, Jesus Valpuesta, José M. Sánchez‐Madrid, Francisco Martín‐Cófreces, Noa B. |
author_facet | Rojas‐Gómez, Amelia Dosil, Sara G. Chichón, Francisco J. Fernández‐Gallego, Nieves Ferrarini, Alessia Calvo, Enrique Calzada‐Fraile, Diego Requena, Silvia Otón, Joaquin Serrano, Alvaro Tarifa, Rocio Arroyo, Montserrat Sorrentino, Andrea Pereiro, Eva Vázquez, Jesus Valpuesta, José M. Sánchez‐Madrid, Francisco Martín‐Cófreces, Noa B. |
author_sort | Rojas‐Gómez, Amelia |
collection | PubMed |
description | Cell proteostasis includes gene transcription, protein translation, folding of de novo proteins, post‐translational modifications, secretion, degradation and recycling. By profiling the proteome of extracellular vesicles (EVs) from T cells, we have found the chaperonin complex CCT, involved in the correct folding of particular proteins. By limiting CCT cell‐content by siRNA, cells undergo altered lipid composition and metabolic rewiring towards a lipid‐dependent metabolism, with increased activity of peroxisomes and mitochondria. This is due to dysregulation of the dynamics of interorganelle contacts between lipid droplets, mitochondria, peroxisomes and the endolysosomal system. This process accelerates the biogenesis of multivesicular bodies leading to higher EV production through the dynamic regulation of microtubule‐based kinesin motors. These findings connect proteostasis with lipid metabolism through an unexpected role of CCT. |
format | Online Article Text |
id | pubmed-10276179 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-102761792023-06-18 Chaperonin CCT controls extracellular vesicle production and cell metabolism through kinesin dynamics Rojas‐Gómez, Amelia Dosil, Sara G. Chichón, Francisco J. Fernández‐Gallego, Nieves Ferrarini, Alessia Calvo, Enrique Calzada‐Fraile, Diego Requena, Silvia Otón, Joaquin Serrano, Alvaro Tarifa, Rocio Arroyo, Montserrat Sorrentino, Andrea Pereiro, Eva Vázquez, Jesus Valpuesta, José M. Sánchez‐Madrid, Francisco Martín‐Cófreces, Noa B. J Extracell Vesicles Research Articles Cell proteostasis includes gene transcription, protein translation, folding of de novo proteins, post‐translational modifications, secretion, degradation and recycling. By profiling the proteome of extracellular vesicles (EVs) from T cells, we have found the chaperonin complex CCT, involved in the correct folding of particular proteins. By limiting CCT cell‐content by siRNA, cells undergo altered lipid composition and metabolic rewiring towards a lipid‐dependent metabolism, with increased activity of peroxisomes and mitochondria. This is due to dysregulation of the dynamics of interorganelle contacts between lipid droplets, mitochondria, peroxisomes and the endolysosomal system. This process accelerates the biogenesis of multivesicular bodies leading to higher EV production through the dynamic regulation of microtubule‐based kinesin motors. These findings connect proteostasis with lipid metabolism through an unexpected role of CCT. John Wiley and Sons Inc. 2023-06-16 2023-06 /pmc/articles/PMC10276179/ /pubmed/37328936 http://dx.doi.org/10.1002/jev2.12333 Text en © 2023 The Authors. Journal of Extracellular Vesicles published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Rojas‐Gómez, Amelia Dosil, Sara G. Chichón, Francisco J. Fernández‐Gallego, Nieves Ferrarini, Alessia Calvo, Enrique Calzada‐Fraile, Diego Requena, Silvia Otón, Joaquin Serrano, Alvaro Tarifa, Rocio Arroyo, Montserrat Sorrentino, Andrea Pereiro, Eva Vázquez, Jesus Valpuesta, José M. Sánchez‐Madrid, Francisco Martín‐Cófreces, Noa B. Chaperonin CCT controls extracellular vesicle production and cell metabolism through kinesin dynamics |
title | Chaperonin CCT controls extracellular vesicle production and cell metabolism through kinesin dynamics |
title_full | Chaperonin CCT controls extracellular vesicle production and cell metabolism through kinesin dynamics |
title_fullStr | Chaperonin CCT controls extracellular vesicle production and cell metabolism through kinesin dynamics |
title_full_unstemmed | Chaperonin CCT controls extracellular vesicle production and cell metabolism through kinesin dynamics |
title_short | Chaperonin CCT controls extracellular vesicle production and cell metabolism through kinesin dynamics |
title_sort | chaperonin cct controls extracellular vesicle production and cell metabolism through kinesin dynamics |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10276179/ https://www.ncbi.nlm.nih.gov/pubmed/37328936 http://dx.doi.org/10.1002/jev2.12333 |
work_keys_str_mv | AT rojasgomezamelia chaperonincctcontrolsextracellularvesicleproductionandcellmetabolismthroughkinesindynamics AT dosilsarag chaperonincctcontrolsextracellularvesicleproductionandcellmetabolismthroughkinesindynamics AT chichonfranciscoj chaperonincctcontrolsextracellularvesicleproductionandcellmetabolismthroughkinesindynamics AT fernandezgallegonieves chaperonincctcontrolsextracellularvesicleproductionandcellmetabolismthroughkinesindynamics AT ferrarinialessia chaperonincctcontrolsextracellularvesicleproductionandcellmetabolismthroughkinesindynamics AT calvoenrique chaperonincctcontrolsextracellularvesicleproductionandcellmetabolismthroughkinesindynamics AT calzadafrailediego chaperonincctcontrolsextracellularvesicleproductionandcellmetabolismthroughkinesindynamics AT requenasilvia chaperonincctcontrolsextracellularvesicleproductionandcellmetabolismthroughkinesindynamics AT otonjoaquin chaperonincctcontrolsextracellularvesicleproductionandcellmetabolismthroughkinesindynamics AT serranoalvaro chaperonincctcontrolsextracellularvesicleproductionandcellmetabolismthroughkinesindynamics AT tarifarocio chaperonincctcontrolsextracellularvesicleproductionandcellmetabolismthroughkinesindynamics AT arroyomontserrat chaperonincctcontrolsextracellularvesicleproductionandcellmetabolismthroughkinesindynamics AT sorrentinoandrea chaperonincctcontrolsextracellularvesicleproductionandcellmetabolismthroughkinesindynamics AT pereiroeva chaperonincctcontrolsextracellularvesicleproductionandcellmetabolismthroughkinesindynamics AT vazquezjesus chaperonincctcontrolsextracellularvesicleproductionandcellmetabolismthroughkinesindynamics AT valpuestajosem chaperonincctcontrolsextracellularvesicleproductionandcellmetabolismthroughkinesindynamics AT sanchezmadridfrancisco chaperonincctcontrolsextracellularvesicleproductionandcellmetabolismthroughkinesindynamics AT martincofrecesnoab chaperonincctcontrolsextracellularvesicleproductionandcellmetabolismthroughkinesindynamics |